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Preface

Introduction

This document acts as a repository of knowledge for the Monte Carlo N-Particle (MCNP) transport computer
code. It is maintained alongside the source code and attempts to introduce new users and re-familiarize
experienced users with the theory and practices of using the MCNP code for the wide range of particle
transport analyses that it is appropriate for. The latest version of the MCNP code, version 6.3.0, provides
the Monte Carlo particle transport community with the latest feature developments and bug �xes in the
MCNP code. The MCNP code version 6.0 and later is also known as the MCNP6 code. This document is
organized in four parts:

Part I focuses on theory and is based largely on the MCNP5 theory manual [3],

Part II focuses on user guidance and input speci�cation and is largely based on the MCNP6 user manual
[4]

Part III focuses on primers and examples and is largely based on the examples in the MCNP6 user manual
[Chapter 4 of 4]

Part IV contains appendices that provide details such as �le formats, constants, etc.

Getting Additional Help with the MCNP Code

A website providing information on upcoming MCNP classes, a reference collection, email forum, and
development team contact information is maintained at https://mcnp.lanl.gov. To seek additional help with
all aspects of the MCNP code, users are encouraged to:

1. Review the reference collection to become familiar with related work,

2. Attend MCNP classes relevant to their technical focus area(s), and

3. Subscribe to, monitor, and post to the MCNP forum, as appropriate. Current instructions to subscribe
to the forum are available on the MCNP website at https://mcnp.lanl.gov. Users must have a valid
MCNP license to subscribe to the forum, and only subscribers may post to the forum.

Finally, users may contact the MCNP development team directly using the contact information provided.
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Reporting Bugs in the MCNP Code

If users identify a bug in the MCNP code, they should:

1. Create the simplest possible input �le that demonstrate the misbehavior observed,

2. Attach the input �le, and any necessary supporting �les (weight-window input �les, unstructured mesh
�les, etc.) to an email describing:

(a) The computer operating system and version,

(b) The MCNP code version and compilation options, if known,

(c) The parallel computing environment (MPI, OpenMP, etc.), and

(d) Steps to reproduce the behavior.

3. Send the email and attachments to mcnp_help@lanl.gov.

Document Conventions

This document follows certain typographic conventions:

Hyperlinks are used to improve the navigability of this document. Text in this style
can be clicked in the PDF rendition of this document to take the reader
elsewhere in the document or to the internet.

CARD is used to indicate an input �le card, which is usually hyperlinked to the
card's de�nition elsewhere in this document.

This Text Style is used to show the contents of �les or commands that should be typed
literally.

This Text Style is used to show text that should be replaced with user-supplied values in
examples and card de�nitions.

This Text Style is used to indicate electronic construct names of such as �le names, script
names, subroutine names, and short library name abbreviations.

(x; y; z) is used to indicate coordinates either in a local or global coordinate system,
either abstractly as (x; y; z) or directly as, e.g., (1; 3; 5).

[i; j; k ] is used to indicate lattice elements, either abstractly as[i; j; k ] or directly
as, e.g.,[1; 3; 5].

P is used to indicate a particle variable that should be replaced with a speci�c
user-speci�ed particle type such as �n� for neutrons, � p� for photons, etc.
See Table 4.3 for the full list of particle type identi�ers.

Important details are often accumulated in lists such as the following. If a detail is relevant elsewhere, a
hyperlink may exist to it such as 1 .

LA-UR-22-30006, Rev. 1 20 of 1078 Theory & User Manual



Details:

1 The MCNP code cannot solve your problem, it can only answer your question.

(a) It is important that a user understand how to ask the right question.

2 Often, the most di�cult part of using the MCNP code is calculating a quantity that can be measured.

The stylistic box that follows designates a cautionary comment, which is important to its nearby text. For
example. . .

o Caution

When you see this box, you know the text within it is important to keep in mind.

The stylistic box that follows designates information that is relevant to feature deprecation. A unique identi�er
that relates to the MCNP issue-tracking system (e.g., DEP-12345) is used to cross-reference this box from
elsewhere in the document and from within the code (e.g., in deprecation warning messages).

Because the MCNP code has undergone signi�cant modernization work, it is important to recognize,
understand, and test new features that make old features deprecated. Deprecated features should not be
relied upon because they may be removed in the next release of the code. By removing these features, the
MCNP development team can reduce its maintenance burden and instead focus on providing new features
(and code releases) more quickly.

@ Deprecation Notice DEP-12345

When you see this box, particularly about a feature you use, a plan should be developed and executed
to migrate away from the old feature/behavior to the new feature/behavior while maintaining proper
quality assurance and quality control.

The MCNP input �le contains entries that are commonly referred to as cards. The word �card� used
throughout this manual describes a single constituent of user input that is typically a single line of a �le.
Cards are usually structured to take a list of whitespace-delimited numbers or keyword-value pairs. This
terminology is historical and refers to a time when input was processed on punched cards. As cards are
described (primarily in Chapter 5), they appear as shown below.

Cell-card Form: CARDNAME:P x

or
Data-card Form: CARDNAME:P x1 x2 : : : xJ

P Particle designator.

x Value to assign to the cell.

x j Value to assign to cell j . Number of entries equals number of cells in
problem.

LA-UR-22-30006, Rev. 1 21 of 1078 Theory & User Manual



Data-card Form: CARDNAMEkeyword = value(s)

Description: here

Use: here

Default: here

keyword1 = value Description of parameter. If

keyword1 = foo do one behavior

keyword1 = bar do another behavior

keyword2 = value Description of parameter. If

keyword2 = foo do one behavior

keyword2 = bar do another behavior

File Listings and PDF Attachments

Source-code and MCNP �le listings are given in the format shown in Listing 1.

Often, these �les are electronically attached to the PDF rendition of this document such that they can be
easily retrieved by the reader.

These can be accessed using Adobe Acrobat through the menu path shown in Fig. 1. The Evince software
provides a similar capability to retrieve electronic attachments.

Recommended Citation

The recommended citation for this document is [5].

A recommended BibTEX entry is given in Listing 2.

Listing 1: Godiva MCNP Input Example (g1.txt)

1 g1 - Godiva critical

2 c

3 c CELL CARDS

4 10 100 -18.74 -1 imp:n=1

5 20 0 1 imp:n=0

6

7 c SURFACE CARDS

8 1 so 8.741

9

10 c DATA CARDS

11 kcode 1000 1.0 10 50

12 ksrc 0.0 0.0 0.0

13 m100 92235 -.9473

14 92238 -.0527
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Figure 1: Adobe Acrobat Menu Path to Access PDF Attachments

Listing 2: Recommended BibTeX Entry for this Document (recommended_citation.bib)

1 @TechReport{MCNP63 _Manual,

2 author = {Joel A. Kulesza and Terry R. Adams and Jerawan C. Armstrong and Simon R. Bolding and

Forrest B. Brown and Jeffrey S. Bull and Timothy P. Burke and Alexander R. Clark and Forster, III,

Robert Arthur and Jesse F. Giron and Avery S. Grieve and Colin J. Josey and Roger L. Martz and Gregg

W. McKinney and Eric J. Pearson and Michael E. Rising and Solomon, Jr., Clell J. and Sriram

Swaminarayan and Travis J. Trahan and Stephen C. Wilson and Anthony J. Zukaitis},

3 editor = {Joel A. Kulesza},

4 title = {{MCNP\textsuperscript{\textregistered} Code Version 6.3.0 Theory \& User Manual}},

5 institution = {Los Alamos National Laboratory},

6 number = {LA-UR-22-30006, Rev. 1},

7 address = {Los Alamos, NM, USA},

8 year = {2022},

9 month = sep,

10 }
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Abbreviations

1-D one-dimensional

2-D two-dimensional

3-D three-dimensional

8-D eight-dimensional

ACE a compact ENDF

ACTI Advanced Computational Technology Initiative

ACTL Activation Library

ANS American Nuclear Society

ANSI American National Standards Institute

AP anterior-posterior

ASCII American Standard Code for Information Interchange

ASTM American Society of Testing and Materials, now ASTM International

AWR atomic weight ratio

CAD computer-aided design

CAE computer-aided engineering

CDF cumulative distribution function

CE continuous energy

CEM Cascade-Exciton Model

CERN Conseil Européen pour la Recherche Nucléaire (European Organization for Nuclear
Research)

CGM Cascading Gamma-ray and Multiplicity code

CLT Central Limit Theorem

CNDC Chinese Nuclear Data Center

CSDA continuous slowing down approximation

CSEWG Cross Section Evaluation Working Group

CSG constructive solid geometry
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CSR compressed sparse row

DBRC Doppler broadening resonance correction

DOP delayed on production

DR dominance ratio

EALF energy of the average neutron lethargy causing �ssion

EEOUT Elemental Edit Output File

ELA Event Log Analyzer

ENDF Evaluated Nuclear Data File

ENDL Evaluated Nuclear Data Library

ENIAC Electronic Numerical Integrator and Computer

EOF end of �le

EPDL Evaluated Photon Data Library

FEA �nite element analysis

FIC �ux image on a cylinder

FIP �ux image by pinhole

FIR �ux image radiograph

FLUKA FLUktuierende KAskade

FOM �gure of merit

FREYA Fission Reaction Event Yield Algorithm

FWHM full width at half maximum

GDR giant dipole resonance

GEM Generalized Evaporation Model

GEM2 Generalized Evaporation/Fission Model

GMV General Mesh Viewer

GUI graphical user interface

GWD gigawatt days

HDF hierarchical data format

HEU highly enriched uranium

HPGe high-purity germanium

HTGR high-temperature gas reactor

IAEA International Atomic Energy Agency

ICN Integrated Computing Network

ICRP International Commission on Radiological Protection
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ICRS International Conference on Radiation Shielding

ICRU International Commission on Radiation Units and Measurements

IEEE Institute of Electrical and Electronics Engineers

INC Intra-Nuclear Cascade

INCL Intra-Nuclear Cascade model developed at Liege

ISO isotropic

ISRD International Symposium on Reactor Dosimetry

ITS Integrated TIGER Series

JAERI Japan Atomic Energy Research Institute

JINR Joint Institute for Nuclear Research

KWV keyword-value

LANL Los Alamos National Laboratory, formerly Los Alamos Scienti�c Laboratory

LANSCE Los Alamos Neutron Science Center

LAQGSM Los Alamos Quark-gluon String Model

LASL Los Alamos Scienti�c Laboratory

LAT lateral

LCG linear congruential generator

LCS LAHET Code System

LEU low enriched uranium

LLAT left-lateral

MCNP Monte Carlo N-Particle

MEM Modi�ed Pre-equilibrium Model

MG multigroup

MPI Message Passing Interface

MPM Multistage Pre-equilibrium Model

MTU metric tons of uranium

MW megawatt

NCIA neutron capture ion algorithm

NCRP National Council on Radiation Protection and Measurements

NEA Nuclear Energy Agency

NFS network �le system

ORNL Oak Ridge National Laboratory

OTF on the �y
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OTFDB on-the-�y Doppler broadening

PA posterior-anterior

PDF probability density function; portable document format

PDS position and direction sampling

PHT pulse-height tally

PNG pseudorandom number generator

QD quasi-deuteron

QF (Birk's) quenching factor

RAL Rutherford Appleton Laboratory

REGL Revised Eolus Grid Library

RLAT right-lateral

RNG random number generator

ROC receiver-operator characterization

ROT rotational

RSICC Radiation Safety Information Computational Center

SATIF Shielding Aspects of Accelerators, Targets, and Irradiation Facilities

SF spontaneous �ssion

SSH secure shell

TFC tally �uctuation chart

TTB thick-target bremsstrahlung

UM unstructured mesh

VAA visually accurate area

VOV variance of the variance

VR variance reduction

VTK Visualization ToolKit

XCP X-Computational Physics (a LANL organizational unit)

XDMF eXtensible Data Model and Format

XML Extensible Markup Language

XS cross section

XSDIR cross-section directory

ZAID isotopic proton (Z ) and mass number (A) (and optionally nuclear-data library)
identi�er
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Chapter 1

MCNP Code Overview

This chapter provides an overview of the MCNP code with brief summaries of the material covered in-depth
in later chapters. First, Ÿ1.1 brie�y describes the MCNP code and Monte Carlo particle transport method.
The following �ve features of MCNP code are introduced in Ÿ1.2: (1) nuclear data and reactions, (2) source
speci�cations, (3) tallies and output, (4) estimation of errors, and (5) variance reduction. Finally, Ÿ1.3
explains MCNP geometry setup and the concept of cells and surfaces.

1.1 The MCNP Code and the Monte Carlo Method

The MCNP code is a general-purpose, continuous-energy, generalized-geometry, time-dependent code designed
to track 37 particle types over broad range of energies. The code was �rst created in 1977 when a series
of special-purpose Monte Carlo codes were combined to create the �rst generalized Monte Carlo particle
transport code. The worldwide user community's high con�dence in the MCNP code's predictive capabilities
are based on its performance with veri�cation and validation test suites, comparisons to its predecessor
codes, underlying high quality nuclear and atomic databases, and signi�cant use by its users across the world
in hundreds of applications. The MCNP code has become a repository for physics knowledge where the
knowledge and expertise contained in the MCNP code is formidable.

The user creates an MCNP input �le containing information about the problem in areas such as:

ˆ the geometry speci�cation,

ˆ the description of materials and selection of cross-section evaluations,

ˆ the location and characteristics of the source,

ˆ the type of answers or tallies desired, and

ˆ any variance reduction techniques used to improve e�ciency.

An introduction to each area is given in Chapter 3, with more detailed discussion in the MCNP primers
[Part III].

There are �ve guiding principles to keep in mind when developing and running a Monte Carlo particle
transport calculation. They will be more meaningful as you read this manual and gain experience with the
MCNP code, but no matter how sophisticated a user you may become, never forget the following �ve points:

1. De�ne and sample the geometry and source well.

2. You cannot recover lost information.
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Chapter 1. MCNP Code Overview 1.1. The MCNP Code and the Monte Carlo Method

3. Question the statistical convergence, stability, and reliability of results.

4. Be conservative when applying variance reduction.

5. The number of histories run is not indicative of the quality of the answer.

The following subsections compare Monte Carlo and deterministic methods and provide a simple description
of the Monte Carlo method.

1.1.1 Monte Carlo Methods vs. Deterministic Methods

Monte Carlo methods are di�erent from deterministic transport methods. Deterministic methods, the most
common of which is the discrete ordinates method, solve the transport equation for the average particle
behavior. By contrast, Monte Carlo obtains answers by simulating individual particles and recording some
aspects (tallies) of their average behavior. The average behavior of particles in the physical system is then
inferred (using the Central Limit Theorem) from the average behavior of the simulated particles. Not only
are Monte Carlo and deterministic methods very di�erent ways of solving a problem, even what constitutes a
solution is di�erent. Deterministic methods typically give fairly complete information (for example, �ux)
throughout the phase space of the problem. Monte Carlo supplies information only about speci�c tallies
requested by the user.

When Monte Carlo and discrete ordinates methods are compared, it is often said that Monte Carlo solves the
integral transport equation, whereas discrete ordinates solves the integro-di�erential transport equation. Two
things are misleading about this statement. First, the integral and integro-di�erential transport equations are
two di�erent forms of the same equation; if one is solved, the other is solved. Second, Monte Carlo �solves�
a transport problem by simulating particle histories. A transport equation need not be written to solve a
problem by Monte Carlo. Nonetheless, one can derive an equation that describes the probability density of
particles in phase space; this equation turns out to be the same as the integral transport equation.

Without deriving the integral transport equation, it is instructive to investigate why the discrete ordinates
method is associated with the integro-di�erential equation and Monte Carlo with the integral equation. The
discrete ordinates method visualizes the phase space to be divided into many small regions, and the particles
move from one region to another. In the limit, as the regions get progressively smaller, particles moving from
region to region take a di�erential amount of time to move a di�erential distance in space. In the limit, this
approaches the integro-di�erential transport equation, which has derivatives in space and time. By contrast,
Monte Carlo transports particles between events (for example, collisions) that are separated in space and
time. Neither di�erential space nor time are inherent parameters of Monte Carlo transport. The integral
equation does not have terms involving time or space derivatives.

Monte Carlo is well suited to solving complicated three-dimensional, time-dependent problems. Because the
Monte Carlo method does not use phase space regions, there are no averaging approximations required in
space, energy, and time. This is especially important in allowing detailed representation of all aspects of
physical data.

1.1.2 The Monte Carlo Method

Monte Carlo can be used to duplicate theoretically a random walk process (such as the interaction of nuclear
particles with materials) and is particularly useful for complex problems that cannot be modeled by computer
codes that use deterministic methods. The individual probabilistic events that comprise a particle history
from birth to death are simulated sequentially, but particle histories can be simulated in parallel. The
probability distributions governing these events are statistically sampled to describe the total phenomenon.
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Event Log

1. Neutron scatter, photon production

2. Fission, photon production

3. Neutron capture

4. Neutron leakage

5. Photon scatter

6. Photon leakage

7. Photon capture

1

2

3

4

5

6

7

Figure 1.1: Various particle random walks. The zigzag lines are used to represent the moving
of photons in the MCNP user manual, but the MCNP code treats a photon movement as a
straight line between collisions.

In general, the simulation is performed on a computer because the number of trials necessary to adequately
describe the phenomenon is usually quite large. The statistical sampling process is based on the selection
of random numbers�analogous to throwing dice in a gambling casino�hence the name �Monte Carlo.� In
particle transport, the Monte Carlo technique is pre-eminently realistic (a numerical experiment). It consists
of actually following each of many particles from a source throughout its life to its death in some terminal
category (absorption, escape, etc.). Probability distributions are randomly sampled using nuclear data to
determine the outcome at each step of its life.

The MCNP code treats neutrons and photons as particles moving in a straight line between collisions.
Figure 1.1 represents the random history of a neutron incident on a slab of material that can undergo �ssion.
Numbers between 0 and 1 are selected randomly to determine what (if any) and where interaction takes place,
based on the rules (physics) and probabilities (nuclear data) governing the processes and materials involved.
In this particular example, a neutron collision occurs at event 1. The neutron is scattered in the direction
shown, which is selected randomly from the physical scattering distribution. A photon is also produced and
is temporarily stored, or banked, for later analysis. At event 2, �ssion occurs, resulting in the termination of
the incoming neutron and the birth of two outgoing neutrons and one photon. One neutron and the photon
are banked for later analysis. The �rst �ssion neutron is captured at event 3 and terminated. The banked
neutron is now retrieved and, by random sampling, leaks out of the slab at event 4. The �ssion-produced
photon has a collision at event 5 and leaks out at event 6. The remaining photon generated at event 1 is
now followed with a capture at event 7. Note that the MCNP code retrieves banked particles such that
the last particle stored in the bank is taken out �rst (i. e., last-in-�rst-out stack). This neutron history is
now complete. As more and more such histories are followed, the neutron and photon distributions become
better known. The quantities of interest (whatever the user requests) are tallied, along with estimates of the
statistical precision (uncertainty) of the results.

1.2 Introduction to Features of the MCNP Code

Various features, concepts, and capabilities of the MCNP code are summarized in this section. More detail
concerning each topic is available in later chapters or appendices.
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Chapter 1. MCNP Code Overview 1.2. Introduction to Features of the MCNP Code

1.2.1 Nuclear Data and Reactions

The MCNP code uses continuous-energy nuclear and atomic data libraries. The primary sources of nuclear
data are evaluations from the Evaluated Nuclear Data File (ENDF) [6] system, Advanced Computational
Technology Initiative (ACTI) [ 7], the Evaluated Nuclear Data Library (ENDL) [ 8], Evaluated Photon Data
Library (EPDL) [ 9], the Activation Library (ACTL) [ 10] compilations from Livermore, and evaluations
from the Nuclear Physics (T�16) Group [ 11� 13] at Los Alamos. Evaluated data are processed into a format
appropriate for the MCNP code by codes such as NJOY [14� 16]. The processed nuclear data libraries retain
as much detail from the original evaluations as is feasible to faithfully reproduce the evaluator's intent. The
ACE nuclear data libraries used by the MCNP code are publicly available at https://nucleardata.lanl.gov.
Note that while �ACE� is an acronym for �A Compact ENDF,� a better description of ACE is that it is the
processed data for use in the MCNP code, as these �les are often not compact.

Nuclear data tables exist for neutron interactions, neutron-induced photons, photon interactions, neutron
dosimetry or activation, and thermal particle scattering S(�; � ). Most of the photon and electron data are
atomic rather than nuclear in nature; photonuclear data are also included. Each data table available to the
MCNP code is listed on a cross-section directory �le, typically referred to as thexsdir �le. Users may select
speci�c data tables through unique identi�ers for each table, called ZAIDs. These identi�ers generally contain
the atomic number Z, mass number A, and library speci�er ID.

Over 836 neutron interaction tables are available for approximately 100 di�erent isotopes and elements.
Multiple tables for a single isotope are provided primarily because data have been derived from di�erent
evaluations, but also because of di�erent temperature regimes and di�erent processing tolerances. More
neutron interaction tables are constantly being added as new and revised evaluations become available.
Neutron-induced photon production data are given as part of the neutron interaction tables when such data
are included in the evaluations.

Photon interaction tables exist for all elements from Z = 1 through Z = 100. The data in the photon
interaction tables allow the MCNP code to account for coherent and incoherent scattering, photoelectric
absorption with the possibility of �uorescent emission, and pair production. Scattering angular distributions
are modi�ed by atomic form factors and incoherent scattering functions. Cross sections for nearly 2,000
dosimetry or activation reactions involving over 400 target nuclei in ground and excited states are part of the
MCNP data package. These cross sections can be used as energy-dependent response functions in the MCNP
code to determine reaction rates but cannot be used as transport cross sections.

Thermal data tables are appropriate for use with the S(�; � ) scattering treatment in the MCNP code. The
data include chemical (molecular) binding and crystalline e�ects that become important as the neutron's
energy becomes su�ciently low. The thermal scattering library based on ENDF/B-VIII.0 contains 34 materials
and 253 evaluations [17].

1.2.2 Source Speci�cation

The MCNP code's generalized user-input source capability allows the user to specify a wide variety of
source conditions without having to make a code modi�cation. Independent probability distributions may
be speci�ed for the source variables of energy, time, position, and direction, and for other parameters such
as starting cell(s) or surface(s). Information about the geometric extent of the source can also be given. In
addition, source variables may depend on other source variables (for example, energy as a function of angle)
thus extending the built-in source capabilities of the code. The user can bias all input distributions.

In addition to input probability distributions for source variables, certain built-in functions are available.
These include various analytic functions for �ssion and fusion energy spectra such as Watt, Maxwellian, and
Gaussian spectra; Gaussian for time; and isotropic, cosine, and monodirectional for direction. Biasing may
also be accomplished by special built= in functions.
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A surface source allows particles crossing a surface in one problem to be used as the source for a subsequent
problem. The decoupling of a calculation into several parts allows detailed design or analysis of certain
geometric regions without having to rerun the entire problem from the beginning each time. The surface
source has a �ssion volume source option that starts particles from �ssion sites where they were written in a
previous run.

The MCNP code provides the user three methods to de�ne an initial criticality source to estimateke� , the
ratio of neutrons produced in successive generations in �ssile systems.

1.2.3 Tallies and Output

The user can instruct the MCNP code to make various tallies related to particle current, particle �ux, and
energy deposition. MCNP tallies are normalized to be per starting particle except for a few special cases
with criticality sources. Currents can be tallied as a function of direction across any set of surfaces, surface
segments, or sum of surfaces in the problem. Charge can be tallied for charged particles. Fluxes across any
set of surfaces, surface segments, sum of surfaces, and in cells, cell segments, or sum of cells are also available.
Similarly, the �uxes at designated detectors (points or rings) are standard tallies, as well as radiography
detector tallies. Fluxes can also be tallied on a mesh superimposed on the problem geometry. Heating and
�ssion tallies give the energy deposition in speci�ed cells. A pulse height tally provides the energy distribution
of pulses created in a detector by radiation. In addition, particles may be �agged when they cross speci�ed
surfaces or enter designated cells, and the contributions of these �agged particles to the tallies are listed
separately. Tallies such as the number of �ssions, the number of absorptions, the total helium production, or
any product of the �ux times the approximately 100 standard ENDF reactions plus several nonstandard ones
may be calculated with any of the MCNP tallies. In fact, any quantity of the form

C =
�

� (E )f (E )dE (1.1)

can be tallied, where� (E ) is the energy-dependent �uence, andf (E ) is any product or summation of the
quantities in the cross-section libraries or a response function provided by the user. The tallies may also be
reduced by line-of-sight attenuation. Tallies may be made for segments of cells and surfaces without having
to build the desired segments into the actual problem geometry. All tallies are functions of time and energy
as speci�ed by the user and are normalized to be per starting particle. Mesh tallies are functions of energy
and are also normalized to be per starting particle.

In addition to the tally information, the output �le contains tables of standard summary information to give
the user a better idea of how the problem ran. This information can give insight into the physics of the
problem and the adequacy of the Monte Carlo simulation. If errors occur during the running of a problem,
detailed diagnostic prints for debugging are given. Printed with each tally is also its statistical relative error
corresponding to one standard deviation. Following the tally is a detailed analysis to aid in determining
con�dence in the results. Ten pass/no-pass checks are made for the user-selectable tally �uctuation chart
(TFC) bin of each tally. The quality of the con�dence interval still cannot be guaranteed because portions
of the problem phase space possibly still have not been sampled. Tally �uctuation charts, described in the
following section, are also automatically printed to show how a tally mean, error, variance of the variance,
and slope of the largest history scores �uctuate as a function of the number of histories run.

All tally results, except for mesh tallies, can be displayed graphically, either while the code is running or in a
separate post-processing mode.

1.2.4 Estimation of Monte Carlo Errors

MCNP tallies are normalized to be per starting particle and are printed in the output accompanied by a
second numberR, which is the estimated relative error de�ned to be one estimated standard deviation of
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Table 1.1: Guidelines for Interpreting the Relative Error, R� .

Range ofR Quality of the Tally

0.50 to 1.00 Not meaningful
0.20 to 0.50 Factor of a few
0.10 to 0.20 Questionable

< 0.10 Generally reliable
< 0.05 Generally reliable for point detectors

� R = Sx =x and represents the estimated relative error
at the 1� level. These interpretations of R assume
that all portions of the problem phase space are being
sampled well by the Monte Carlo process.

the mean Sx divided by the estimated meanx. In the MCNP code, the quantities required for this error
estimate�the tally and its second moment�are computed after each complete Monte Carlo history, which
accounts for the fact that the various contributions to a tally from the same history are correlated. For a
well-behaved tally, R will be proportional to 1=

p
N where N is the number of histories. Thus, to halveR,

we must increase the total number of histories fourfold. For a poorly behaved tally,R may increase as the
number of histories increases.

The estimated relative error can be used to form con�dence intervals about the estimated mean, allowing one
to make a statement about what the true result is. The Central Limit Theorem states that as N approaches
in�nity there is a 68% chance that the true result will be in the range x(1 � R) and a 95% chance in the range
x(1 � 2R). It is extremely important to note that these con�dence statements refer only to the precision
of the Monte Carlo calculation itself and not to the accuracy of the result compared to the true physical
value. A statement regarding accuracy requires a detailed analysis of the uncertainties in the physical data,
modeling, sampling techniques, and approximations, etc., used in a calculation.

The guidelines for interpreting the quality of the con�dence interval for various values of R are listed in
Table 1.1.

For all tallies except next-event estimators, hereafter referred to as point detector tallies, the quantityR
should be less than 0.10 to produce generally reliable con�dence intervals. Point detector results tend to
have larger third and fourth moments of the individual tally distributions, so a smaller value of R, < 0:05, is
required to produce generally reliable con�dence intervals. The estimated uncertainty in the Monte Carlo
result must be presented with the tally so that all are aware of the estimated precision of the results.

Keep in mind the footnote to Table 1.1. For example, if an important but highly unlikely particle path in
phase space has not been sampled in a problem, the Monte Carlo results will not have the correct expected
values and the con�dence interval statements may not be correct. The user can guard against this situation
by setting up the problem so as not to exclude any regions of phase space and by trying to sample all regions
of the problem adequately.

Despite one's best e�ort, an important path may not be sampled often enough, causing con�dence interval
statements to be incorrect. To try to inform the user about this behavior, the MCNP code calculates a �gure
of merit ( FOM ) for one tally bin of each tally as a function of the number of histories and prints the results
in the tally �uctuation charts at the end of the output. The FOM is de�ned as

FOM � 1=
�
R2T

�
(1.2)

where T is the computer time in minutes. The more e�cient a Monte Carlo calculation is, the larger the
FOM will be because less computer time is required to reach a given value ofR.

The FOM should be approximately constant asN increases becauseR2 is proportional to 1=N and T is
proportional to N . Always examine the tally �uctuation charts to be sure that the tally appears well behaved,
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as evidenced by a fairly constantFOM . A sharp decrease in theFOM indicates that a seldom-sampled
particle path has signi�cantly a�ected the tally result and relative error estimate. In this case, the con�dence
intervals may not be correct for the fraction of the time that statistical theory would indicate. Examine the
problem to determine what path is causing the large scores and try to rede�ne the problem to sample that
path much more frequently.

After each tally, an analysis is done and additional useful information is printed about the TFC tally bin
result. The nonzero scoring e�ciency, the zero and nonzero score components of the relative error, the
number and magnitude of negative history scores, if any, and the e�ect on the result if the largest observed
history score in the TFC were to occur again on the very next history are given. A table just before the
TFCs summarizes the results of these checks for all tallies in the problem. Ten statistical checks are made
and summarized in Table 160 after each tally, with a pass yes/no criterion. The empirical history score
probability density function (PDF) for the TFC bin of each tally is calculated and displayed in printed plots.

The TFCs at the end of the problem include the variance of the variance (an estimate of the error of the
relative error), and the slope (the estimated exponent of the PDF large score behavior) as a function of the
number of particles started.

All this information provides the user with statistical information to aid in forming valid con�dence intervals
for Monte Carlo results. There is no GUARANTEE, however. The possibility always exists that some as
yet unsampled portion of the problem may change the con�dence interval if more histories were calculated.
Chapter 2 contains more information about estimation of Monte Carlo precision.

1.2.5 Variance Reduction

As noted in the previous section,R (the estimated relative error) is proportional to 1=
p

N , where N is the
number of histories. For a given MCNP run, the computer time T consumed is proportional toN . Thus
R = C=

p
T, where C is a positive constant. There are two ways to reduceR: (1) increaseT and/or (2)

decreaseC. Computer budgets often limit the utility of the �rst approach. For example, if it has taken 2
hours to obtain R = 0 :10, then 200 hours will be required to obtainR = 0 :01. For this reason the MCNP code
has special variance reduction techniques for decreasingC (variance is the square of the standard deviation).
The constant C depends on the tally choice and/or the sampling choices.

1.2.5.1 Tally Choice

As an example of the tally choice, note that the �uence in a cell can be estimated either by a collision estimate
or a track-length estimate. The collision estimate is obtained by tallying 1=� t (� t is the macroscopic total
cross section) at each collision in the cell and the track-length estimate is obtained by tallying the distance
the particle moves while inside the cell. Note that as� t gets very small, very few particles collide but give
enormous tallies when they do, producing a high variance situation [Ÿ2.6.6]. In contrast, the track-length
estimate gets a tally from every particle that enters the cell. For this reason the MCNP code has track length
tallies as standard tallies, whereas the collision tally is not standard in the MCNP code, except for estimating
ke� .

1.2.5.2 Non-analog Monte Carlo

Explaining how sampling a�ects C requires understanding of the non-analog Monte Carlo model.

The simplest Monte Carlo model for particle transport problems is the analog model that uses the natural
probabilities that various events occur (for example, collision, �ssion, capture, etc.). Particles are followed
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from event to event by a computer, and the next event is always sampled (using the random number generator)
from a number of possible next events according to the natural event probabilities. This is called the analog
Monte Carlo model because it is directly analogous to the naturally occurring transport.

The analog Monte Carlo model works well when a signi�cant fraction of the particles contribute to the tally
estimate and can be compared to detecting a signi�cant fraction of the particles in the physical situation.
There are many cases for which the fraction of particles detected is very small, less than10� 6. For these
problems analog Monte Carlo fails because few, if any, of the particles tally, and the statistical uncertainty in
the answer is unacceptable.

Although the analog Monte Carlo model is the simplest conceptual probability model, there are other
probability models for particle transport that estimate the same average value as the analog Monte Carlo
model, while often making the variance (uncertainty) of the estimate much smaller than the variance for the
analog estimate. This means that problems that would be impossible to solve in days of computer time with
analog methods can be solved in minutes of computer time with non-analog methods.

A non-analog Monte Carlo model attempts to follow �interesting� particles more often than �uninteresting�
ones. An �interesting� particle is one that contributes a large amount to the quantity (or quantities) that
needs to be estimated. There are many non-analog techniques, and all are meant to increase the odds that a
particle scores (contributes). To ensure that the average score is the same in the non-analog model as in
the analog model, the score is modi�ed to remove the e�ect of biasing (changing) the natural odds. Thus,
if a particle is arti�cially made q times as likely to execute a given random walk, then the particle's score
is weighted by (multiplied by) 1=q. The average score is thus preserved because the average score is the
sum, over all random walks, of the probability of a random walk multiplied by the score resulting from that
random walk.

A non-analog Monte Carlo technique will have the same expected tallies as an analog technique if the expected
weight executing any given random walk is preserved. For example, a particle can be split into two identical
pieces and the tallies of each piece are weighted by1=2 of what the tallies would have been without the split.
Such non-analog, or variance reduction, techniques can often decrease the relative error by sampling naturally
rare events with an unnaturally high frequency and weighting the tallies appropriately.

1.2.5.3 Variance Reduction Tools in the MCNP Code

There are four categories of variance reduction techniques [18] that range from the trivial to the esoteric.

1.2.5.3.1 Truncation Methods

Truncation methods are the simplest of variance reduction methods. They speed up calculations by truncating
parts of phase space that do not contribute signi�cantly to the solution. The simplest example is geometry
truncation in which unimportant parts of the geometry are simply not modeled. Speci�c truncation methods
available in the MCNP code are the energy cuto� and time cuto�.

1.2.5.3.2 Population Control Methods

Population control methods use particle splitting and Russian roulette to control the number of samples
taken in various regions of phase space. In important regions many samples of low weight are tracked, while
in unimportant regions few samples of high weight are tracked. A weight adjustment is made to ensure that
the problem solution remains unbiased. Speci�c population control methods available in the MCNP code are
geometry splitting and Russian roulette, energy splitting/ roulette, time splitting/roulette, weight cuto�, and
weight windows.
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1.2.5.3.3 Modi�ed Sampling Methods

Modi�ed sampling methods alter the statistical sampling of a problem to increase the number of tallies per
particle. For any Monte Carlo event it is possible to sample from any arbitrary distribution rather than the
physical probability as long as the particle weights are then adjusted to compensate. Thus, with modi�ed
sampling methods, sampling is done from distributions that send particles in desired directions or into other
desired regions of phase space such as time or energy, or change the location or type of collisions. Modi�ed
sampling methods in the MCNP code include the exponential transform, implicit capture, forced collisions,
source biasing, and neutron-induced photon production biasing.

1.2.5.3.4 Partially Deterministic Methods

Partially deterministic methods are the most complicated class of variance reduction methods. They circumvent
the normal random walk process by using deterministic-like techniques, such as next-event estimators, or
by controlling the random number sequence. In the MCNP code these methods include point detectors,
DXTRAN, and correlated sampling.

Variance reduction techniques, used correctly, can greatly help the user produce a more e�cient calculation.
Used poorly, they can result in a wrong answer with good statistics and few clues that anything is amiss.
Some variance reduction methods have general application and are not easily misused. Others are more
specialized and attempts to use them carry high risk. The use of weight windows tends to be more powerful
than the use of importances but typically requires more input data and more insight into the problem. The
exponential transform for thick shields is not recommended for the inexperienced user; rather, use many cells
with increasing importances (or decreasing weight windows) through the shield. Forced collisions are used to
increase the frequency of random walk collisions within optically thin cells but should be used only by an
experienced user. The point detector estimator should be used with caution, as should DXTRAN.

For many problems, variance reduction is not just a way to speed up the problem but is necessary to get any
answer at all. Deep penetration problems and pipe detector problems, for example, will run too slowly by
factors of trillions without adequate variance reduction. Consequently, users have to become skilled in using
the variance reduction techniques in the MCNP code.

The following summarizes brie�y the main MCNP variance reduction techniques. Detailed discussion is in
Ÿ2.7.

1. Energy cuto�: Particles whose energy is out of the range of interest are terminated so that computation
time is not spent following them.

2. Time cuto�: Like the energy cuto� but based on time.

3. Geometry splitting with Russian roulette: Particles transported from a region of higher importance to
a region of lower importance (where they will probably contribute little to the desired problem result)
undergo Russian roulette; that is, some of those particles will be killed a certain fraction of the time,
but survivors will be counted more by increasing their weight the remaining fraction of the time. In
this way, unimportant particles are followed less often, yet the problem solution remains undistorted.
On the other hand, if a particle is transported to a region of higher importance (where it will likely
contribute to the desired problem result), it may be split into two or more particles (or tracks), each
with less weight and therefore counting less. In this way, important particles are followed more often,
yet the solution is undistorted because, on average, total weight is conserved.

4. Energy splitting/Russian roulette: Particles can be split or rouletted upon entering various user= supplied
energy ranges. Thus important energy ranges can be sampled more frequently by splitting the weight
among several particles and less important energy ranges can be sampled less frequently by rouletting
particles.
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5. Time splitting/Russian roulette: Like energy splitting/roulette, but based on time.

6. Weight cuto�/Russian roulette: If a particle weight becomes so low that the particle becomes insigni�cant,
it undergoes Russian roulette. Most particles are killed, and some particles survive with increased
weight. The solution is unbiased because total weight is conserved, but computer time is not wasted on
insigni�cant particles.

7. Weight window: As a function of energy, geometric location, or both, low= weighted particles are
eliminated by Russian roulette and high= weighted particles are split. This technique helps keep the
weight dispersion within reasonable bounds throughout the problem. An importance generator is
available that estimates the optimal limits for a weight window.

8. Exponential transformation: To transport particles long distances, the distance between collisions in
a preferred direction is arti�cially increased and the weight is correspondingly arti�cially decreased.
Because large weight �uctuations often result, it is highly recommended that the weight window be
used with the exponential transform.

9. Implicit absorption: When a particle collides, there is a probability that it is absorbed by the nucleus.
In analog absorption, the particle is killed with that probability. In implicit absorption, also known
as implicit capture or survival biasing, the particle is never killed by absorption; instead, its weight is
reduced by the absorption probability at each collision. Important particles are permitted to survive
by not being lost to absorption. On the other hand, if particles are no longer considered useful after
undergoing a few collisions, analog absorption e�ciently gets rid of them.

10. Forced collisions: A particle can be forced to undergo a collision each time it enters a designated cell
that is almost transparent to it. The particle and its weight are appropriately split into two parts,
collided and uncollided. Forced collisions are often used to generate contributions to point detectors,
ring detectors, and/or DXTRAN spheres.

11. Source variable biasing: Source particles with phase-space variables of more importance are emitted
with a higher frequency but with a compensating lower weight than are less important source particles.

12. Point and ring detectors: When the user wishes to tally a �ux= related quantity at a point in space,
the probability of transporting a particle precisely to that point is vanishingly small. Therefore,
pseudoparticles are directed to the point instead. Every time a particle history is born in the source or
undergoes a collision, the user may require that a pseudoparticle be tallied at a speci�ed point in space.
In this way, many pseudoparticles of low weight reach the detector, which is the point of interest, even
though no particle histories could ever reach the detector. For problems with rotational symmetry, the
point may be represented by a ring to enhance the e�ciency of the calculation.

13. DXTRAN: DXTRAN, which stands for deterministic transport, improves sampling in the vicinity
of detectors or other tallies. It involves deterministically transporting particles on collision to some
arbitrary, user-de�ned sphere in the neighborhood of a tally and then calculating contributions to the
tally from these particles. Contributions to the detectors or to the DXTRAN spheres can be controlled
as a function of a geometric cell or as a function of the relative magnitude of the contribution to the
detector or DXTRAN sphere. The DXTRAN method is a way of obtaining large numbers of particles
on user-speci�ed �DXTRAN spheres.� DXTRAN makes it possible to obtain many particles in a small
region of interest that would otherwise be di�cult to sample. Upon sampling a collision or source
density function, DXTRAN estimates the correct weight fraction that should scatter toward, and arrive
without collision at, the surface of the sphere. The DXTRAN method then puts this correct weight on
the sphere. The source or collision event is sampled in the usual manner, except that the particle is
killed if it tries to enter the sphere because all particles entering the sphere have already been accounted
for deterministically.

14. Correlated sampling: The sequence of random numbers in the Monte Carlo process is chosen so that
statistical �uctuations in the problem solution will not mask small variations in that solution resulting
from slight changes in the problem speci�cation. The i th history will always start at the same point in
the random number sequence no matter what the previousi � 1 particles did in their random walks.
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Figure 1.2: Right-handed Cartesian coordinate system.

Note: weight cuto�/Russian roulette and implicit absorption are the only two variance reduction techniques
enabled by default in an MCNP calculation.

1.3 MCNP Geometry

We will present here only basic introductory information about geometry setup, surface speci�cation, and cell
and surface card inputs. Areas of further interest would be the complement operator, use of parentheses, and
repeated structure and lattice de�nitions, found in Chapter 2. Chapter 10 contains geometry examples and
is recommended as a next step. Chapter 5 has detailed information about the format and entries on cell,
surface (including macrobody), and data cards.

The geometry of the MCNP code treats an arbitrary three-dimensional con�guration of user-de�ned materials
in geometric cells bounded by �rst- and second-degree surfaces and fourth-degree elliptical tori. The cells are
de�ned by the intersections, unions, and complements of the regions bounded by the surfaces. Surfaces are
de�ned by supplying coe�cients to the analytic surface equations or, for certain types of surfaces, known
points on the surfaces. The MCNP code also provides a �macrobody� capability, where basic shapes such as
spheres, boxes, cylinders, etc., may be combined using Boolean operators. This capability is essentially the
same as the combinatorial geometry provided by other codes such as MORSE, KENO, and VIM.

The MCNP code has a more general geometry than is available in most combinatorial geometry codes. In
addition to the capability of combining several prede�ned geometric bodies, as in a combinatorial geometry
scheme, the MCNP code gives the user the added �exibility of de�ning geometric regions from all the �rst and
second degree surfaces of analytical geometry and elliptical tori and then of combining them with Boolean
operators. The code does extensive internal checking to �nd input errors. In addition, the geometry-plotting
capability in the MCNP code helps the user check for geometry errors.

The MCNP code treats geometric cells in a Cartesian coordinate system. The surface equations recognized
by the MCNP code are listed in Table 5.1. The particular Cartesian coordinate system used is arbitrary and
user de�ned, but the right = handed system shown in Figure 1.2 is usually chosen.

Using the bounding surfaces speci�ed on cell cards, the MCNP code tracks particles through the geometry,
calculates the intersection of a track's trajectory with each bounding surface, and �nds the minimum positive
distance to an intersection. If the distance to the next collision is greater than this minimum distance and
there are no DXTRAN spheres along the track, the particle leaves the current cell. At the appropriate surface
intersection, the MCNP code �nds the correct cell that the particle will enter by checking the sense of the
intersection point for each surface listed for the cell. When a complete match is found, the MCNP code has
found the correct cell on the other side and the transport continues.

1.3.1 Cells

When cells are de�ned, an important concept is that of the sense of all points in a cell with respect to a
bounding surface. Suppose thats = f (x; y; z) = 0 is the equation of a surface in the problem. For any set of
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(a) Single, complicated, cell. (b) Many, simple, cells.

Figure 1.3: Complicated versus simple cell example.

points (x; y; z), if s = 0 the points are on the surface. However, for points not on the surface, ifs < 0, the
points are said to have a negative sense with respect to that surface and, conversely, a positive sense ifs > 0.
For example, a point at x = 3 has a positive sense with respect to the planex� 2 = 0. That is, the equation
x� D = 3 � 2 = s = 1 is positive for x = 3 (where D is a constant).

Cells are de�ned on cell cards. Each cell is described by a cell number, material number, and material density
followed by a list of operators and signed surfaces that bound the cell. If the sense is positive, the sign can be
omitted. The material number and material density can be replaced by a single zero to indicate a void cell.
The cell number must begin in columns 1�5. The remaining entries follow, separated by blanks. A complete
description of the cell card format can be found in Ÿ5.2. Each surface divides all space into two regions, one
with positive sense with respect to the surface and the other with negative sense. The geometry description
de�nes the cell to be the intersection, union, and/or complement of the listed regions.

The subdivision of the physical space into cells is not necessarily governed only by the di�erent material
regions, but may be a�ected by problems of sampling and variance reduction techniques (such as splitting
and Russian roulette), the need to specify an unambiguous geometry, and the tally requirements. The tally
segmentation feature may eliminate most of the tally requirements.

Be cautious about making any one cell very complicated. With the union operator and disjointed regions,
a very large geometry can be set up with just one cell. The problem is that for each track �ight between
collisions in a cell, the intersection of the track with each bounding surface of the cell is calculated, a
calculation that can be costly if a cell has many surfaces. As an example, consider Figure 1.3a. It is just a lot
of parallel cylinders and is easy to set up. However, the cell containing all the little cylinders is bounded by
twelve surfaces (counting a top and bottom). A much more e�cient geometry is seen in Figure 1.3b, where
the large cell has been broken up into a number of smaller cells.

1.3.1.1 Cells De�ned by Intersections of Regions of Space

The intersection operator in the MCNP code is implicit; it is simply the blank space between two surface
numbers on the cell card.

If a cell is speci�ed using only intersections, all points in the cell must have the same sense with respect to
a given bounding surface. This means that, for each bounding surface of a cell, all points in the cell must
remain on only one side of any particular surface. Thus, there can be no concave corners in a cell speci�ed
only by intersections. Figure 1.4, a cell formed by the intersection of �ve surfaces (ignore surface 6 for the
time being), illustrates the problem of concave corners by allowing a particle (or point) to be on two sides of
a surface in one cell. Surfaces 3 and 4 form a concave corner in the cell such that pointsp1 and p2 are on the
same side of surface 4 (that is, have the same sense with respect to 4) but pointp3 is on the other side of
surface 4 (opposite sense). Pointsp2 and p3 have the same sense with respect to surface 3, butp1 has the
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Figure 1.4: Geometry example, A.

opposite sense. One way to remedy this dilemma (and there are others) is to add surface 6 between the 3/4
corner and surface 1 to divide the original cell into two cells.

With surface 6 added to Figure 1.4, the cell to the right of surface 6 is number 1 (cells indicated by circled
numbers); to the left number 2; and the outside cell number 3. The cell cards (in two dimensions, all cells
void) are given in Listing 1.1.

Listing 1.1: Example cell de�nitions.

1 1 0 1 -2 -3 6

2 2 0 1 -6 -4 5

Cell 1 is a void and is formed by the intersection of the region above (positive sense) surface 1 with the region
to the left (negative sense) of surface 2, intersected with the region below (negative sense) surface 3, and
�nally intersected with the region to the right (positive sense) of surface 6. Cell 2 is described similarly.

Cell 3 cannot be speci�ed with the intersection operator. The following section about the union operator is
needed to describe cell 3.

1.3.1.2 Cells De�ned by Unions of Regions of Space

The union operator, signi�ed by a colon on the cell cards, allows concave corners in cells and also cells that are
completely disjoint. The intersection and union operators are binary Boolean operators, so their use follows
Boolean algebra methodology; unions and intersections can be used in combination in any cell description.

Spaces on either side of the union operator are irrelevant, but remember that a space without the colon
signi�es an intersection. In the hierarchy of operations, intersections are performed �rst and then unions.
There is no left to right ordering. Parentheses can be used to clarify operations and in some cases are required
to force a certain order of operations. Innermost parentheses are cleared �rst. Spaces are optional on either
side of a parenthesis. A parenthesis is equivalent to a space and signi�es an intersection.

For example, let A and B be two regions of space. The region containing points that belong to both A and B
is called the intersection of A and B. The region containing points that belong to A alone or to B alone or to
both A and B is called the union of A and B. The shaded area in Figure 1.5a represents the union of A and
B (or A : B), and the shaded area in Figure 1.5b represents the intersection of A and B (or A B). The only
way regions of space can be added is with the union operator. An intersection of two spaces always results
in a region no larger than either of the two spaces. Conversely, the union of two spaces always results in a
region no smaller than either of the two spaces.

A simple example will further illustrate the concept of Figure 1.5 and the union operator to solidify the
concept of adding and intersecting regions of space to de�ne a cell. See also the second example in Ÿ10.1.1.2.
In Figure 1.6 we have two in�nite planes that meet to form two cells. Cell 1 is easy to de�ne; it is everything
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Figure 1.5: Cells from unions and intersections.
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Figure 1.6: More complicated cells from unions and intersections.

in the universe to the right of surface 1 (that is, a positive sense) that is also in common with (or intersected
with) everything in the universe below surface 2 (that is, a negative sense). Therefore, the surface relation of
cell 1 is 1 -2.

Cell 2 is everything in the universe to the left (negative sense) of surface 1 plus everything in the universe
above (positive sense) surface 2, or -1 : 2, illustrated in Figure 1.6b by all the shaded regions of space. If
cell 2 were speci�ed as -1 2, that would represent the region of space common to -1 and 2, which is only the
cross-hatched region in the �gure and is obviously an improper speci�cation for cell 2.

Returning to Figure 1.4, if cell 1 is inside the solid black line and cell 2 is the entire region outside the solid
line, then the MCNP cell cards in two dimensions are (assuming both cells are voids) given in Listing 1.2.

Listing 1.2: Example cell de�nitions with intersections.

1 1 0 1 -2 (-3 : -4) 5

2 2 0 -5 : - 1 : 2 : 3 4

Cell 1 is de�ned as the region above surface 1 intersected with the region to the left of surface 2, intersected
with the union of regions below surfaces 3 and 4, and �nally intersected with the region to the right of surface
5. Cell 2 contains four concave corners (all except between surfaces 3 and 4), and its speci�cation is just
the converse (or complement) of cell 1. Cell 2 is the space de�ned by the region to the left of surface 5 plus
the region below 1 plus the region to the right of 2 plus the space de�ned by the intersections of the regions
above surfaces 3 and 4.
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A simple consistency check can be noted with the two cell cards in Listing 1.2. All intersections for cell 1
become unions for cell 2 and vice versa. The senses are also reversed.

Note that in this example, all corners less than 180 degrees in a cell are handled by intersections, and all
corners greater than 180 degrees are handled by unions.

To illustrate some of the concepts about parentheses, assume an intersection is thought of mathematically as
multiplication and a union is thought of mathematically as addition. Parentheses are removed �rst, with
multiplication being performed before addition. The cell cards for the example cards from Figure 1.4 may be
written as shown in Listing 1.3.

Listing 1.3: Example cell de�nitions mathematical rendition.

1 1 a � b � (c + d) � e
2 2 e + a + b+ c � d

Note that parentheses are required for the �rst cell but not for the second, although the second could have
been written as e+ a + b+ ( c � d), (e+ a + b) + ( c � d), (e) + ( a) + ( b) + ( c � d) , etc.

Several more examples using the union operator are given in Ÿ10.1.1. Study them to get a better understanding
of this powerful operator that can greatly simplify geometry setups.

1.3.2 Surface Type Speci�cation

The �rst- and second-degree surfaces plus the fourth-degree elliptical and degenerate tori of analytical
geometry are all available in the MCNP code. The surfaces are designated by mnemonics such as C/Z for a
cylinder parallel to the z-axis. A cylinder at an arbitrary orientation is designated by the general quadratic
(GQ) mnemonic. A paraboloid parallel to a coordinate axis is designated by the special quadratic (SQ)
mnemonic. The 29 mnemonics representing various types of surfaces are listed in Table 5.1.

1.3.3 Surface Parameter Speci�cation

There are two ways to specify surface parameters in the MCNP code: (1) by supplying the appropriate
coe�cients needed to satisfy the surface equation, and (2) by specifying known geometric points on a surface
that is rotationally symmetric about a coordinate axis.

1.3.3.1 Coe�cients for the Surface Equations

The �rst way to de�ne a surface is to use one of the surface-type mnemonics from Table 5.1 and to calculate
the appropriate coe�cients needed to satisfy the surface equation.

For example, a sphere of radius 3.62 cm with the center located at the point(4; 1; � 3) is speci�ed by

1 S 4 1 -3 3.62
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An ellipsoid whose axes are not parallel to the coordinate axes is de�ned by the GQ mnemonic plus up
to 10 coe�cients of the general quadratic equation. Calculating the coe�cients can be (and frequently is)
nontrivial, but the task is greatly simpli�ed by de�ning an auxiliary coordinate system whose axes coincide
with the axes of the ellipsoid. The ellipsoid is easily de�ned in terms of the auxiliary coordinate system, and
the relationship between the auxiliary coordinate system and the main coordinate system is speci�ed on a
TRn card, described in Ÿ5.5.3.

The use of the SQ and GQ surfaces is determined by the orientation of the axes. One should always use the
simplest possible surface in describing geometries; for example, using a GQ surface instead of an S to specify
a sphere will require more computational e�ort for the MCNP code.

1.3.3.2 Points that De�ne a Surface

The second way to de�ne a surface is to supply known points on the surface. This method is convenient if you
are setting up a geometry from something like a blueprint where you know the coordinates of intersections of
surfaces or points on the surfaces. When three or more surfaces intersect at a point, this second method also
produces a more nearly perfect point of intersection if the common point is used in the surface speci�cation.
It is frequently di�cult to get complicated surfaces to meet at one point if the surfaces are speci�ed by the
equation coe�cients. Failure to achieve such a meeting can result in the unwanted loss of particles.

There are, however, restrictions that must be observed when specifying surfaces by points that do not exist
when specifying surfaces by coe�cients. Surfaces described by points must be either skew planes or surfaces
rotationally symmetric about the x, y, or z axes. They must be unique, real, and continuous. For example,
points speci�ed on both sheets of a hyperboloid are not allowed because the surface is not continuous.
However, it is valid to specify points that are all on one sheet of the hyperboloid. See theX , Y , Z , and
P input card descriptions in Ÿ5.3.2 for additional explanation.
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Chapter 2

Geometry, Data, Physics, and Mathematics

2.1 Introduction

This chapter discusses the mathematics and physics of the MCNP code, including geometry, cross-section
libraries, sources, variance reduction schemes, Monte Carlo simulation of particle transport, and tallies.
This discussion is not meant to be exhaustive; many details of the particular techniques and of the Monte
Carlo method itself will be found elsewhere. Carter and Cashwell's book [19], a good general reference on
radiation transport by Monte Carlo, is based upon what is in the MCNP code. Another reference is Lux and
Koblinger's book [20]. Methods of sampling from standard probability densities are discussed in the Monte
Carlo samplers by Everett and Cashwell [21].

The MCNP code is currently developed by Monte Carlo Codes Group (XCP-3) in X-Computational Physics
Division (XCP) at Los Alamos National Laboratory (LANL). The MCNP code development team maintains
and improves the MCNP code, supports and deploys it at LANL and at other Department of Energy (DOE)
laboratories and government agencies where we have collaborators or sponsors, o�ers online and in-person
MCNP training classes, and provides limited free consulting and support for MCNP users. The MCNP
code is typically distributed to other users through the Radiation Safety Information Computational Center
(RSICC) at Oak Ridge National Laboratory ( https://rsicc.ornl.gov ).

The MCNP code is comprised of hundreds of subroutines written in Fortran, C, and C++. The source code
has been made as system independent as possible to enhance its portability, and follows the Fortran 2018 [22],
C 99 [23], and C++ 14 [ 24] standards. The MCNP code takes advantage of parallel computer architectures
using two parallel models: task-based threading using the OpenMP model and distributed processing is
supported through the use of the Message Passing Interface (MPI) model. The MCNP code also combines
threading with MPI, but some features of the code are only available with MPI-based parallelism.

2.1.1 History of the Monte Carlo Method and the MCNP Code

The Monte Carlo method is generally attributed to scientists working on the development of nuclear weapons
in Los Alamos during the 1940s. However, its roots go back much farther.

Perhaps the earliest documented use of random sampling to solve a mathematical problem was that of
Compte de Bu�on in 1772 [25]. A century later people performed experiments in which they threw a needle
in a haphazard manner onto a board ruled with parallel straight lines and inferred the value of� from
observations of the number of intersections between needle and lines [26, 27]. Laplace suggested in 1786 that
� could be evaluated by random sampling [28]. Lord Kelvin appears to have used random sampling to aid
in evaluating some time integrals of the kinetic energy that appear in the kinetic theory of gasses [29] and
acknowledged his secretary for performing calculations for more than 5000 collisions [30].
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According to Emilio Segrè, Enrico Fermi's student and collaborator, Fermi invented a form of the Monte
Carlo method when he was studying the moderation of neutrons in Rome [30, 31]. Though Fermi did not
publish anything, he amazed his colleagues with his predictions of experimental results. After indulging
himself, he would reveal that his �guesses� were really derived from the statistical sampling techniques that
he performed in his head when he couldn't fall asleep.

During World War II at Los Alamos, Fermi joined many other eminent scientists to develop the �rst atomic
bomb. It was here that Stan Ulam became impressed with electromechanical computers used for implosion
studies. Ulam realized that statistical sampling techniques were considered impractical because they were
long and tedious, but with the development of computers they could become practical. Ulam discussed
his ideas with others like John von Neumann and Nicholas Metropolis. Statistical sampling techniques
reminded everyone of games of chance, where randomness would statistically become resolved in predictable
probabilities. It was Nicholas Metropolis who noted that Stan had an uncle who would borrow money from
relatives because he �just had to go to Monte Carlo� and thus named the mathematical method �Monte Carlo�
[31].

Meanwhile, a team of wartime scientists headed by John Mauchly was working to develop the �rst electronic
computer at the University of Pennsylvania in Philadelphia. Mauchly realized that if Geiger counters in
physics laboratories could count, then they could also do arithmetic and solve mathematical problems. When
he saw a seemingly limitless array of women cranking out �ring tables with desk calculators at the Ballistic
Research Laboratory at Aberdeen, he proposed [31] that an electronic computer be built to deal with these
calculations. The result was ENIAC (Electronic Numerical Integrator and Computer), the world's �rst
computer, built for Aberdeen at the University of Pennsylvania. It had 18,000 double triode vacuum tubes in
a system with 500,000 solder joints [31].

John von Neumann was a consultant to both Aberdeen and Los Alamos. When he heard about ENIAC, he
convinced the authorities at Aberdeen that he could provide a more exhaustive test of the computer than
mere �ring-table computations. In 1945 John von Neumann, Stan Frankel, and Nicholas Metropolis visited
the Moore School of Electrical Engineering at the University of Pennsylvania to explore using ENIAC for
thermonuclear weapon calculations with Edward Teller at Los Alamos [31]. After the successful testing and
dropping of the �rst atomic bombs a few months later, work began in earnest to calculate a thermonuclear
weapon. On March 11, 1947, John von Neumann sent a letter to Robert Richtmyer, leader of the Theoretical
Division at Los Alamos, proposing use of the statistical method to solve neutron di�usion and multiplication
problems in �ssion devices [31]. His letter was the �rst formulation of a Monte Carlo computation for an
electronic computing machine. In 1947, while in Los Alamos, Fermi invented a mechanical device called
FERMIAC [32] to trace neutron movements through �ssionable materials by the Monte Carlo Method.

By 1948 Stan Ulam was able to report to the Atomic Energy Commission that not only was the Monte Carlo
method being successfully used on problems pertaining to thermonuclear as well as �ssion devices, but also
it was being applied to cosmic ray showers and the study of partial di�erential equations [31]. In the late
1940s and early 1950s, there was a surge of papers describing the Monte Carlo method and how it could solve
problems in radiation or particle transport and other areas [33� 35]. Many of the methods described in these
papers are still used in Monte Carlo today, including the method of generating random numbers [36] used in
the MCNP code. Much of the interest was based on continued development of computers such as the Los
Alamos MANIAC (Mechanical Analyzer, Numerical Integrator, and Computer) in March 1952.

The Atomic Energy Act of 1946 created the Atomic Energy Commission to succeed the Manhattan Project.
In 1953 the United States embarked upon the �Atoms for Peace� program with the intent of developing nuclear
energy for peaceful applications such as nuclear power generation. Meanwhile, computers were advancing
rapidly. These factors led to greater interest in the Monte Carlo method. In 1954 the �rst comprehensive
review of the Monte Carlo method was published by Herman Kahn [37] and the �rst book was published by
Cashwell and Everett [21] in 1959.

At Los Alamos, Monte Carlo computer codes developed along with computers. The �rst Monte Carlo code was
the simple 19-step computing sheet in John von Neumann's letter to Richtmyer. But as computers became
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more sophisticated, so did the codes. At �rst the codes were written in machine language and each code
would solve a speci�c problem. In the early 1960s, better computers and the standardization of programming
languages such as Fortran made possible more general codes. The �rst Los Alamos general-purpose particle
transport Monte Carlo code was MCS [38], written in 1963. Scientists who were not necessarily experts in
computers and Monte Carlo mathematical techniques now could take advantage of the Monte Carlo method
for radiation transport. They could run the MCS code to solve modest problems without having to do either
the programming or the mathematical analysis themselves. MCS was followed by MCN [39] in 1965. MCN
could solve the problem of neutrons interacting with matter in a three-dimensional geometry and used physics
data stored in separate, highly developed, libraries.

In 1973 MCN was merged with MCG [40], a Monte Carlo gamma code that treated higher energy photons,
to form MCNG, a coupled neutron-gamma code. In 1977 MCNG was merged with MCP [40], a Monte Carlo
Photon code with detailed physics treatment down to 1 keV, to accurately model neutron-photon interactions.
The code has been known as the MCNP code (often referred to, incorrectly, as just �MCNP�) ever since.
Though at �rst �MCNP� stood for Monte Carlo Neutron Photon, now it stands for Monte Carlo N-Particle.
Other major advances in the 1970s included the present generalized tally structure, automatic calculation of
volumes, and a Monte Carlo eigenvalue algorithm to determineke� for nuclear criticality ( KCODE).

In 1983 MCNP3 was released, entirely rewritten in ANSI standard Fortran 77. MCNP3 was the �rst MCNP
code version internationally distributed through the Radiation Shielding and Information Center at Oak
Ridge, Tennessee. Other 1980s versions of the MCNP code were MCNP3A (1986) and MCNP3B (1988),
that included tally plotting graphics (MCPLOT), the present generalized source, surface sources, repeated
structures/lattice geometries, and multi-group/adjoint transport. MCNP4 was released in 1990 and was
the �rst UNIX version of the code. It accommodated N-particle transport and multitasking on parallel
computer architectures. MCNP4 added electron transport (patterned after the Integrated TIGER Series
(ITS) electron physics) [41], the pulse height tally (F8), a thick-target bremsstrahlung approximation for
photon transport, enabled detectors and DXTRAN with the S(�; � ) thermal treatment, provided greater
random number control, and allowed plotting of tally results while the code was running.

MCNP4A, released in 1993, featured enhanced statistical analysis, distributed processor multitasking for
running in parallel on a cluster of scienti�c workstations, new photon libraries, ENDF-6 capabilities, color
X-Windows graphics, dynamic memory allocation, expanded criticality output, periodic boundaries, plotting
of particle tracks via SABRINA, improved tallies in repeated structures, and many smaller improvements.

MCNP4B, released in 1997, featured di�erential operator perturbations, enhanced photon physics equivalent
to ITS3.0, PVM load balance and fault tolerance, cross-section plotting, postscript �le plotting, 64-bit
workstation upgrades, PC X-windows, inclusion of LAHET HMCNP, lattice universe mapping, enhanced
neutron lifetimes, coincident-surface lattice capability, and many smaller features and improvements.

MCNP4C, released in 2000, featured an unresolved resonance treatment, macrobodies, superimposed impor-
tance mesh, perturbation enhancements, electron physics enhancements, plotter upgrades, cumulative tallies,
parallel enhancements and other small features and improvements.

MCNP5, released in 2003, is rewritten in ANSI standard Fortran 90. It includes the addition of photonuclear
collision physics, superimposed mesh tallies, time splitting, and plotter upgrades. MCNP5 also includes
parallel computing enhancements with the addition of support for OpenMP and MPI.

The MCNPX program began in 1994 as an extension of MCNP4B and LAHET 2.8, extending the MCNP
code to 34 particle types at nearly all energies. The INCL, CEM, and LAQGSM physics models were added
along with heavy ion transport. New sources, tallies, output, graphics and variance reduction capabilities
were developed and added. The merger of MCNP5 and MCNPX began in 2006 and the �rst version of the
merged code, MCNP6.1 (i.e., the MCNP code, version 6.1.0), was released in 2013 (which followed a release
of the MCNP code, version 6 beta 2, in 2012 and was later followed by a release of the MCNP code, version
6.1.1, in 2014).

LA-UR-22-30006, Rev. 1 48 of 1078 Theory & User Manual



Chapter 2. Geometry, Data, Physics, and Mathematics 2.1. Introduction

The MCNP code, version 6.2, that released in 2018, contains 39 new features in addition to 172 bug �xes and
code enhancements. Two new utility tools, Whisper and MCNPTools, were released with the MCNP6.2 code.
Details of MCNP6.2 features and bug �xes are in the release notes [42].

Large production codes such as the MCNP code have revolutionized science�not only in the way it is done,
but also by becoming the repositories for physics knowledge. The knowledge and expertise contained in the
MCNP code is formidable. Current MCNP development is characterized by a strong emphasis on quality
control, documentation, and research. New features continue to be added to the MCNP code to re�ect new
advances in computer architectures, improvements in Monte Carlo methodology, and better physics models.
The MCNP code has a proud history and a promising future.

2.1.2 Structure of the MCNP Code

The MCNP code is currently written using a mixed Fortran/C/C++ programming paradigm. It can be built
with any Fortran compiler supporting the Fortran 2018 standard [22] and any C++ compiler supporting
the C++14 standard [ 24]. Fortran global data is shared via modules. The general internal structure of the
MCNP code is as follows:

Initiation (IMCN):

ˆ Initialize global variables to default values;

ˆ Read input two times to get user inputs;

ˆ Set up variable dimensions or dynamically allocated storage;

ˆ Read input �le to load input;

ˆ Initialize random number generator;

ˆ Process geometry;

ˆ Process source;

ˆ Process tallies;

ˆ Process materials speci�cations including masses without loading the data �les;

ˆ Calculate cell volumes and surface areas.

Interactive Geometry Plot (PLOTG).

Cross-section Processing (XACT):

ˆ Load libraries;

ˆ Eliminate excess nuclear data outside problem energy range;

ˆ Doppler broaden elastic and total cross sections to the proper temperature if the problem temperature
is higher than the library temperature;

ˆ Process multigroup libraries if requested;

ˆ Process electron libraries including calculation of range tables, straggling tables, scattering angle
distributions, and bremsstrahlung.
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MCRUN sets up multitasking and multiprocessing, runs histories, and returns to print, write

RUNTPE dumps, or process another criticality cycle.

Under MCRUN, the MCNP code runs particle histories. The following procedures are for neutron and/or
photon transport

ˆ Start a source particle;

ˆ Find the distance to the next boundary, cross the surface and enter the next cell;

ˆ Find the total neutron cross section and process neutron collisions producing photons as appropriate;

ˆ Find the total photon cross section and process photon collisions producing electrons as appropriate;

ˆ Use the optional thick-target bremsstrahlung approximation if no electron transport;

ˆ Follow electron tracks;

ˆ Process optional multigroup collisions;

ˆ Process detector tallies or DXTRAN;

ˆ Process surface, cell, and pulse height tallies.

Periodically write output �le, restart dumps, update to next criticality cycle, rendezvous for multitasking and
updating detector and DXTRAN Russian roulette criteria, etc.:

ˆ Go to the next criticality cycle;

ˆ Print output �le summary tables;

ˆ Print tallies;

ˆ Generate weight windows.

Plot tallies, cross sections, and other data (MCPLOT).

MPI distributed processor multiprocessing routines.

Random number generator and control.

Mathematics, character manipulation, and other routines.

2.1.2.1 History Flow

The history �ow of heavy charged particles is described in [43]. The basic �ow of a particle history for a
coupled neutron/photon/electron problem is handled as follows:

For a given history, the random number sequence is set up and the number of the history is incremented.
The �ag is set for the type of particle being run: 1 for a neutron, 2 for a photon, and 3 for an electron. Some
arrays and variables are initialized to zero. The branch of the history is set to 1.

Next, the appropriate source routine is called. Source options are the standard �xed sources, the surface
source, the criticality source, or a user-provided source. All of the parameters describing the particle are set
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in these source routines, including position, direction of �ight, energy, weight, time, and starting cell (and
possibly surface), by sampling the various distributions described on the source input control cards. Several
checks are made at this time to verify that the particle is in the correct cell or on the correct surface, and
directed toward the correct cell.

Next, the initial parameters of the �rst �fty particle histories are printed. Then some of the summary
information is incremented. Energy, time, and weight are checked against cuto�s. A number of error
checks are made. Detector contributions are scored, and then the DXTRAN subroutine is called (if used
in the problem) to create particles on the spheres. The particles are saved in the bank for later tracking.
Bookkeeping is started for the pulse height cell tally energy balance. The weight window game is played,
with any additional particles from splitting put into the bank and any losses to Russian roulette terminated.

Then the actual particle transport is started. For an electron source, electrons are run separately. For a
neutron or photon source, the intersection of the particle trajectory with each bounding surface of the cell is
calculated. The minimum positive distance to the cell boundary indicates the next surface the particle is
heading toward. The distance to the nearest DXTRAN sphere is calculated, as is the distance to time cuto�,
and energy boundary for multigroup charged particles. The cross sections for a current cell are calculated
using a binary table lookup in data tables for neutrons or photons. The total photon cross section may include
the photonuclear portion of the cross section if photonuclear physics is in use. See Ÿ5.7.2.3 for a discussion of
turning photonuclear physics on. The total cross section is modi�ed by the exponential transformation if
necessary. The distance to the next collision is determined (if a forced collision is required, the uncollided part
is banked). The track length of the particle in the cell is found as the minimum of the distance to collision, the
distance to the cell surface, one mean free path (in the case of a mesh-based weight window), the distance to
a DXTRAN sphere, the distance to time cuto�, or the distance to energy boundary. Track length cell tallies
are then incremented. Some summary information is incremented. The particle's parameters (time, position,
and energy) are then updated. If the particle's distance to a DXTRAN sphere (of the same type as the
current particle) is equal to the minimum track length, the particle is terminated because particles reaching
the DXTRAN sphere are already accounted for by the DXTRAN particles from each collision. If the particle
exceeds the time cuto�, the track is terminated. If the particle was detected leaving a DXTRAN sphere,
the DXTRAN �ag is set to zero and the weight cuto� game is played. The particle is either terminated to
weight cuto� or survives with an increased weight. Weight adjustments then are made for the exponential
transformation.

If the minimum track length is equal to the distance-to-surface crossing, the particle is transported to the cell
surface, any surface tallies are processed, and the particle is processed for entering the next cell. Re�ecting
surfaces, periodic boundaries, geometry splitting, Russian roulette from importance sampling, and loss to
escape are treated. The bank entries or retrievals are made on a last-in, �rst-out basis. The history is
continued by going back to the previous paragraph and repeating the steps.

If the distance to collision is less than the distance to surface, or if a multigroup charged particle reaches
the distance to energy boundary, the particle undergoes a collision. For neutrons, the collision analysis
determines which nuclide is involved in the collision, samples the target velocity of the collision nuclide for
the free gas thermal treatment, generates and banks any photons, handles analog capture or capture by
weight reduction, plays the weight cuto� game, and handlesS(�; � ) thermal collisions and elastic or inelastic
scattering. For criticality problems, �ssion sites are stored for subsequent generations. Any additional tracks
generated in the collision are put in the bank. The energies and directions of particles exiting the collision
are determined. Multigroup and multigroup/adjoint collisions are treated separately. The collision process
and thermal treatments are described in more detail in Ÿ2.4.3.1.

The collision analysis for photons is similar to that for neutrons, but includes either the simple or the detailed
physics treatments. See Ÿ5.7.2.3 for a discussion of turning photonuclear physics on. The simple physics
treatment is valid only for photon interactions with free electrons, i.e. it does not account for electron
binding e�ects when sampling emission distributions; the detailed treatment is the default and includes form
factors and Compton pro�les for electron binding e�ects, coherent (Thomson) scatter, and �uorescence from
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photoelectric capture [Ÿ2.4.4]. There may also be photonuclear physics (if photonuclear physics is in use).
Additionally, photonuclear biasing is available (similar to forced collisions) to split the photon (updating
the weight by the interaction probabilities) and force one part to undergo a photoatomic collision and the
second part to undergo a photonuclear collision. The collision analysis samples for the collision nuclide, treats
photonuclear collisions, treats photoelectric absorption, or capture (with �uorescence in the detailed physics
treatment), incoherent (Compton) scatter (with Compton pro�les and incoherent scattering factors in the
detailed physics treatment to account for electron binding), coherent (Thomson) scatter for the detailed
physics treatment only (again with form factors), and pair production. Secondary particles from photonuclear
collisions (either photons or neutrons) are sampled using the same routines as for inelastic neutron collisions
[Ÿ2.4.3.5]. Electrons are generated for incoherent scatter, pair production, and photoelectric absorption.
These electrons may be assumed to deposit all their energy instantly if IDES=1 on thePHYS:P card, or they
may produce electrons with the thick-target bremsstrahlung approximation (default for MODEP problems,
IDES=0 on the PHYS:P card), or they may undergo full electron transport (default for MODEP E problems,
IDES=0 on the PHYS:P card.) Multigroup or multigroup/adjoint photons are treated separately.

After the surface crossing or collision is processed, transport continues by calculating the distance to cell
boundary, and so on. Or if the particle involved in the collision was killed by capture or variance reduction,
the bank is checked for any remaining progeny, and if none exists, the history is terminated. Appropriate
summary information is incremented, the tallies of this particular history are added to the total tally data,
the history is terminated, and a return is made.

For each history, checks are made to see if output is required or if the calculation should be terminated
because enough histories have been run or too little time remains to continue. For continuation, the HSTORY
subroutine is called again. Otherwise a return is made to MCRUN, and the summary information and tally
data are printed.

2.2 Geometry

The basic MCNP geometry concepts, discussed in Chapter 1, include the sense of a cell, the intersection and
union operators, and surface speci�cation. Covered in this section are the complement operator; the repeated
structure capability; an explanation of two surfaces, the cone and the torus; and a description of ambiguity,
re�ecting, white, and periodic boundary surfaces.

2.2.1 Complement Operator

The complement operator provides no new capability over the intersection and union operators. It is just a
shorthand cell-specifying method that implicitly uses the intersection and union operators.

The complement operator is the # symbol. The complement operator can be thought of as standing for not
in. There are two basic uses of the operator:

1. # n means that the description of the current cell is the complement of the description of celln.

2. #(. . . ) means complement the portion of the cell description in the parentheses (usually just a list of
surfaces describing another cell).

In the �rst of the two above forms, the MCNP code performs �ve operations: (1) the symbol # is removed, (2)
parentheses are placed aroundn, (3) any intersections in n become unions, (4) any unions inn are replaced
by back-to-back parentheses, �)(�, which is an intersection, and (5) the senses of the surfaces de�ningn are
reversed.

A simple example is a cube. We de�ne a two-cell geometry with six surfaces, where cell 1 is the cube and cell
2 is the outside world:
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Figure 2.1: Illustration of poor use of complement operator.

1 1 0 -1 2 -3 4 -5 6

2 2 0 1:-2: 3:-4: 5:-6

Note that cell 2 is everything in the universe that is not in cell 1, or

1 2 0 #1

The form #( n) is not allowed; it is functionally available as the equivalent of � n.

o Caution

Using the complement operator can destroy some of the necessary conditions for some cell volume and
surface area calculations by the MCNP code. See Ÿ10.1.1.14 for an example.

The complement operator can be easily abused if it is used indiscriminately. A simple example can best
illustrate the problems. Figure 2.1 consists of two concentric spheres inside a box. Cell 4 can be described
using the complement operator as

1 4 0 #3 #2 #1

Although cells 1 and 2 do not touch cell 4, to omit them would be incorrect. If they were omitted, the
description of cell 4 would be everything in the universe that is not in cell 3. Since cells 1 and 2 are not part
of cell 3, they would be included in cell 4. Even though surfaces 1 and 2 do not physically bound cell 4, using
the complement operator as in this example causes the MCNP code to think that all surfaces involved with
the complement do bound the cell. Even though this speci�cation is correct and required by the MCNP
code, the disadvantage is that when a particle enters cell 4 or has a collision in cell 4, the MCNP code
must calculate the intersection of the particle's trajectory with all real bounding surfaces of cell 4 plus any
extraneous ones brought in by the complement operator. This intersection calculation is very expensive and
can add signi�cantly to the required computer time.

A better description of cell 4 would be to complement the description of cell 3 (omitting surface 2) by reversing
the senses and interchanging union and intersection operators as illustrated in the cell cards that describe the
simple cube in the preceding paragraphs.
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2.2.2 Repeated Structure Geometry

The repeated structure geometry feature is explained in detail starting on Ÿ5.5.5. The capabilities are only
introduced here. Examples are shown in Chapter 10. The cards associated with the repeated structure
feature are U (universe), FILL , TRCL, URAN, and LAT (lattice) and cell cards with LIKE m BUT.

The repeated structure feature makes it possible to describe only once the cells and surfaces of any structure
that appears more than once in a geometry. This unit then can be replicated at other locations by using
the �LIKE m BUT� construct on a cell card. The user speci�es that a cell is �lled with something called a
universe. The U card identi�es the universe, if any, to which a cell belongs. The FILL card speci�es with
which universe a cell is to be �lled. A universe is either a lattice or an arbitrary collection of cells. The two
types of lattice shapes, hexagonal prisms and hexahedra, need not be rectangular nor regular, but they must
�ll space exactly. Several concepts and cards combine in order to use this capability.

2.2.3 Surfaces

2.2.3.1 Explanation of Cone and Torus

Two surfaces, the cone and torus, require more explanation. The quadratic equation for a cone describes a
cone of two sheets (just like a hyperboloid of two sheets): one sheet is a cone of positive slope, and the other
has a negative slope. A cell whose description contains a two-sheeted cone may require an ambiguity surface
to distinguish between the two sheets. The MCNP code provides the option to select either of the two sheets;
this option frequently simpli�es geometry setups and eliminates any ambiguity. The +1 or the � 1 entry on
the cone surface card causes the one sheet cone treatment to be used. If the sign of the entry is positive, the
speci�ed sheet is the one that extends to in�nity in the positive direction of the coordinate axis to which the
cone axis is parallel. The converse is true for a negative entry. This feature is available only for cones whose
axes are parallel to the coordinate axes of the problem.

The treatment of fourth degree surfaces in Monte Carlo calculations has always been di�cult because of
the resulting fourth order polynomial (�quartic�) equations. These equations must be solved to �nd the
intersection of a particle's line of �ight with a toroidal surface. In the MCNP code these equations must also
be solved to �nd the intersection of surfaces in order to compute the volumes and surface areas of geometric
regions of a given problem. In either case, the quartic equation,

x + Bx + Cx + Dx + E = 0 ; (2.1)

is di�cult to solve on a computer because of roundo� errors. For many years the MCNP toroidal treatment
required 30 decimal digits (CDC double-precision) accuracy to solve quartic equations. Even then there were
round-o� errors that had to be corrected by Newton-Raphson iterations. Schemes using a single-precision
quartic formula solver followed by a Newton-Raphson iteration were inadequate because if the initial guess of
roots supplied to the Newton-Raphson iteration is too inaccurate, the iteration will often diverge when the
roots are close together.

The single-precision quartic algorithm in the MCNP code basically follows the quartic solution of Cashwell
and Everett [44]. When roots of the quartic equation are well separated, a modi�ed Newton-Raphson iteration
quickly achieves convergence. But the key to this method is that if the roots are double roots or very close
together, they are simply thrown out because a double root corresponds to a particle's trajectory being
tangent to a toroidal surface, and it is a very good approximation to assume that the particle then has no
contact with the toroidal surface. In extraordinarily rare cases where this is not a good assumption, the
particle would become �lost.� Additional re�nements to the quartic solver include a carefully selected �nite
size of zero, the use of a cubic rather than a quartic equation solver whenever a particle is transported from
the surface of a torus, and a gross quartic coe�cient check to ascertain the existence of any real positive

LA-UR-22-30006, Rev. 1 54 of 1078 Theory & User Manual



Chapter 2. Geometry, Data, Physics, and Mathematics 2.2. Geometry

2 1

a

n Cell Label

n Surface Label

Figure 2.2: Cell demonstrating two di�erent senses.

roots. As a result, the single-precision quartic solver is substantially faster than double-precision schemes,
portable, and also somewhat more accurate.

In the MCNP code, elliptical tori symmetric about any axis parallel to a coordinate axis may be speci�ed.
The volume and surface area of various tallying segments of a torus usually will be calculated automatically.

2.2.3.2 Ambiguity Surfaces

The description of the geometry of a cell must eliminate any ambiguities as to which region of space is
included in the cell. That is, a particle entering a cell should be able to determine uniquely which cell it is in
from the senses of the bounding surfaces. This is not possible in a geometry such as shown in Figure 2.2
unless an ambiguity surface is speci�ed. Suppose the �gure is rotationally symmetric about they-axis.

A particle entering cell 2 from the inner spherical region might think it was entering cell 1 because a test of
the senses of its coordinates would satisfy the description of cell 1 as well as that of cell 2. In such cases, an
ambiguity surface is introduced such as planea. An ambiguity surface need not be a bounding surface of a
cell, but it may be and frequently is. It can also be the bounding surface of some cell other than the one
in question. However, the surface must be listed among those in the problem and must not be a re�ecting
surface [Ÿ2.2.3.3]. The description of cells 1 and 2 in Figure 2.2 is augmented by listing for each its sense
relative to surface a as well as that of each of its other bounding surfaces. A particle in cell 1 cannot have the
same sense relative to surface a as does a particle in cell 2. More than one ambiguity surface may be required
to de�ne a particular cell.

A second example may help to clarify the signi�cance of ambiguity surfaces. We would like to describe the
geometry of Figure 2.3a. Without the use of an ambiguity surface, the result will be Figure 2.3b. Surfaces 1
and 3 are spheres about the origin, and surface 2 is a cylinder around they-axis. Cell 1 is both the center
and outside world of the geometry connected by the region interior to surface 2.

At �rst glance it may appear that cell 1 can easily be speci�ed by -1 : -2 : 3 whereas cell 2 is simply #1.
This results in Figure 2.3b, in which cell 1 is everything in the universe interior to surface 1 plus everything
in the universe interior to surface 2 (remember the cylinder goes to plus and minus in�nity) plus everything
in the universe exterior to surface 3.

An ambiguity surface (plane 4 at y = 0 ) will solve the problem. Everything in the universe to the right of
the ambiguity surface intersected with everything in the universe interior to the cylinder is a cylindrical
region that goes to plus in�nity but terminates at y = 0 . Therefore, -1 : (4 -2) : 3 de�nes cell 1 as desired in
Figure 2.3a. The parentheses in this last expression are not required because intersections are done before
unions. Another expression for cell 2 rather than #1 is 1 -3 #(4 -2).

For the user, ambiguity surfaces are speci�ed the same way as any other surface�simply list the signed
surface number as an entry on the cell card. For the MCNP code, if a particular ambiguity surface appears
on cell cards with only one sense, it is treated as a true ambiguity surface. Otherwise, it still functions as an
ambiguity surface but the TRACK subroutine will try to �nd intersections with it, thereby using a little
more computer time.
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(b) Without ambiguity surface.

Figure 2.3: Example geometry demonstrating ambiguity surface.

2.2.3.3 Re�ecting Surfaces

A surface can be designated a re�ecting surface by preceding its number on the surface card with an asterisk.
Any particle hitting a re�ecting surface is specularly (mirror) re�ected. Re�ecting planes are valuable because
they can simplify a geometry setup (and also tracking) in a problem. They can, however, make it di�cult (or
even impossible) to get the correct answer. The user is cautioned to check the source weight and tallies to
ensure that the desired result is achieved. Any tally in a problem with re�ecting planes should have the same
expected result as the tally in the same problem without re�ecting planes.

o Caution

Point detectors or DXTRAN regions used with re�ecting surfaces give wrong answers [Ÿ2.5.6.4.2].

The following example illustrates the above points and should make MCNP users very cautious in the use of
re�ecting surfaces. Re�ecting surfaces should never be used in any situation without a lot of thought.

Consider a cube of carbon 10 cm on a side sitting on top of a 5-MeV neutron source distributed uniformly
in volume. The source cell is a 1-cm-thick void completely covering the bottom of the carbon cube and no
more. The average neutron �ux across any one of the sides (but not top or bottom) is calculated to be 0.150
(� 0.5%) per cm2 per starting neutron from an MCNP F2 tally, and the �ux at a point at the center of the
same side is1:55� 10� 03 n/cm 2 (� 1%) from an MCNP F5 tally. The cube can be modeled by half a cube
and a re�ecting surface. All dimensions remain the same except the distance from the tally surface to the
opposite surface (which becomes the re�ecting surface) is 5 cm. The source cell is cut in half also. Without
any source normalization, the �ux across the surface is now 0.302 (� 0.5%), which is twice the �ux in the
nonre�ecting geometry. The detector �ux is 2:58� 10� 03 (� 1%), which is less than twice the point detector
�ux in the nonre�ecting problem.

The problem is that for the surface tally to be correct, the starting weight of the source particles has to be
normalized; it should be half the weight of the non-re�ected source particles. The detector results will always
be wrong (and lower) for the reason discussed in Ÿ2.5.6.4.2.

In this particular example, the normalization factor for the starting weight of source particles should be 0.5
because the source volume is half of the original volume. Without the normalization, the full weight of source
particles is started in only half the volume. These normalization factors are problem dependent and should
be derived very carefully.
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Figure 2.4: Demonstration of periodic boundary conditions.

Another way to view this problem is that the tally surface has doubled because of the re�ecting surface; two
scores are being made across the tally surface when one is made across each of two opposite surfaces in the
nonre�ecting problem. The detector has doubled too, except that the contributions to it from beyond the
re�ecting surface are not being made [Ÿ2.5.6.4.2].

2.2.3.4 White Boundaries

A surface can be designated a white boundary surface by preceding its number on the surface card with a plus.
A particle hitting a white boundary is re�ected with a cosine distribution, p(� ) = � , relative to the surface
normal; that is, � =

p
� , where � is a random number. White boundary surfaces are useful for comparing

MCNP results with other codes that have white boundary conditions. They also can be used to approximate
a boundary with an in�nite scatterer. They make no sense in problems with next-event estimators such as
detectors or DXTRAN [Ÿ2.5.6.4.2] and should always be used with caution.

2.2.3.5 Periodic Boundaries

Periodic boundary conditions can be applied to pairs of planes to simulate an in�nite lattice. Although
the same e�ect can be achieved with an in�nite lattice, the periodic boundary is easier to use, simpli�es
comparison with other codes having periodic boundaries, and can save considerable computation time. There
is approximately a 55% run-time penalty associated with repeated structures and lattices that can be avoided
with periodic boundaries. However, collisions and other aspects of the Monte Carlo random walk usually
dominate running time, so the savings realized by using periodic boundaries are usually much smaller. A
simple periodic boundary problem is illustrated in Figure 2.4.

It consists of a square reactor lattice in�nite in the z direction and 4 cm on a side in thex and y directions
with an o�-center 0.5-cm radius cylindrical fuel pin. The MCNP surface cards are given in Listing 2.1.

Listing 2.1: periodic_boundary.mcnp.inp.txt

1 1 -2 px -2

2 2 -1 px 2

3 3 -4 py -2

4 4 -3 py 2

5 5 c/z 0.75 0.75 0.5

The negative entries before the surface mnemonics specify periodic boundaries. Card one says that surface 1
is periodic with surface 2 and is a px plane. Card two says that surface 2 is periodic with surface 1 and is a px
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plane. Card three says that surface 3 is periodic with surface 4 and is a py plane. Card four says that surface
4 is periodic with surface 3 and is a py plane. Card �ve says that surface 5 is an in�nite cylinder parallel to
the z-axis. A particle leaving the lattice out the left side (surface 1) reenters on the right side (surface 2). If
the surfaces were re�ecting, the reentering particle would miss the cylinder, shown by the dotted line. In a
fully speci�ed lattice and in the periodic geometry, the re-entering particle will hit the cylinder as it should.

Much more complicated examples are possible, particularly hexagonal prism lattices. In all cases, the MCNP
code checks that the periodic surface pair matches properly and performs all the necessary surface rotations
and translations to put the particle in the proper place on the corresponding periodic plane.

The following limitations apply:

ˆ Periodic boundaries cannot be used with next-event estimators such as detectors or DXTRAN [Ÿ2.5.6.4.2];

ˆ All periodic surfaces must be planes;

ˆ Periodic planes cannot also have a surface transformation;

ˆ The periodic cells may be in�nite or bounded by planes on the top or bottom that must be re�ecting or
white boundaries but not periodic;

ˆ Periodic planes can only bound other periodic planes or top and bottom planes;

ˆ A single zero-importance cell must be on one side of each periodic plane;

ˆ All periodic planes must have a common rotational vector normal to the geometry top and bottom.

2.3 Cross Sections

The MCNP code package is incomplete without the associated nuclear data tables. The kinds of tables
available and their general features are outlined in this section. The manner in which information contained
on nuclear data tables is used in the MCNP code is described in Ÿ2.4.

There are two broad objectives in preparing nuclear data tables for the MCNP code. First, the data available
to the MCNP code should reproduce the original evaluated data as much as is practical. Second, new data
should be brought into the MCNP package in a timely fashion, thereby giving users access to the most recent
evaluations. The nuclear data needed by the MCNP code are available at the LANL nuclear data website
https://nucleardata.lanl.gov .

Ten classes of data tables exist for the MCNP code. They are:

1. continuous-energy neutron interaction data;

2. discrete reaction neutron interaction data;

3. continuous-energy photoatomic interaction data;

4. continuous-energy photonuclear interaction data;

5. neutron dosimetry cross sections;

6. neutron S(�; � ) thermal data;

7. multigroup neutron, coupled neutron/photon, and charged particles masquerading as neutrons;

8. multigroup photon;
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9. electron interaction data; and

10. charged particle interaction data.

It is understood that photoatomic and electron data are atomic in nature, i.e. one elemental table is acceptable
for any isotope of the element. For example, any isotope of tungsten may use a table with a ZA of 74000.
Likewise, it is understood that neutron and photonuclear tables are nuclear (or isotopic) in nature, i.e. each
isotope requires its own table. For tables describing these reactions, it is necessary to have a table for every
isotope in a material. Note that some older neutron evaluations are �elemental� in that they combine the
reactions on several isotopes into a single table. For example, natural tungsten would need tables with ZA
equal 74180, 74182, 74183, 74184 and 74186. This can create di�culties when specifying material de�nitions.
This has been true in the past, e.g. no neutron table exists for 74180 (0.13 atom percent) and it is typically
ignored. This is still true now that tables must be selected for both neutron and photonuclear interactions.
The MX card has been introduced to control the selection of photonuclear nuclide data.

In MODEN problems, one continuous-energy or discrete-reaction neutron interaction table is required for each
isotope in the problem (some older �elemental� tables are available for neutron interactions). InMODE P

problems, one photoatomic interaction table is required for each element and one photonuclear table is
required for each isotope (if photonuclear physics is in use). InMODEE problems, one electron interaction
table is required for each element. Dosimetry and thermal data are optional. Cross sections from dosimetry
tables can be used as response functions with theFM card to determine reaction rates. ThermalS(�; � ) tables
should be used if the neutrons are transported at su�ciently low energies that molecular binding e�ects are
important.

The MCNP code can read from data tables in two formats. Data tables are transmitted between computer
installations as ASCII text �les using an 80-column card-image Binary Coded Decimal (BCD) format (Type-1
format). If desired, an auxiliary processing code, MAKXSF, converts these �les into unformatted binary
�les (Type-2 format), allowing faster access of the data during execution of the MCNP code and reduced
disk-space for storing the �les. The data contained on a table are independent of how they are stored.

The available data tables are listed in [45]. Each data table is identi�ed by a ZAID. The general form of a
ZAID is ZZZAAA.nnX, where ZZZ is the atomic number, AAA is the atomic mass number, nn is the unique
evaluation identi�er, and X indicates the class of data. For elemental evaluations AAA=000. Data tables are
selected by the user with the Mn, MTn and MXn cards.

In the remainder of this section we describe several characteristics of each class of data such as evaluated
sources, processing tools, and di�erences between data on the original evaluation and on the MCNP data
tables. The means of accessing each class of data through MCNP input will be detailed, and some hints will
be provided on how to select the appropriate data tables.

2.3.1 Neutron Interaction Data: Continuous-energy and Discrete-reaction

In neutron problems, one neutron interaction table is required for each isotope (or element if using the older
�elemental� tables) in the problem. The form of the ZAIDs is ZZZAAA.nnC for a continuous-energy table
and ZZZAAA.nnD for a discrete reaction table. The neutron interaction tables available to the MCNP code
are listed in [45]. It should be noted that although all nuclear data tables in [45] are available to users at Los
Alamos, users at other installations will generally have only a subset of the tables available. Also note that
your institution may make their own tables available to you.

For most materials, there are many cross-section sets available (represented by di�erent values of nn in
the ZAIDs) because of multiple sources of evaluated data and di�erent parameters used in processing the
data. An evaluated nuclear data set is produced by analyzing experimentally measured cross sections and
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combining those data with the predictions of nuclear model calculations in an attempt to extract the most
accurate interaction description. Preparing evaluated cross-section sets has become a discipline in itself and
has developed since the early 1960s. In the US, researchers at many of the national laboratories as well as
several industrial �rms are involved in such work. The American evaluators joined forces in the mid-1960s to
create the national ENDF system [46].

There has been some confusion due to the use of the term ENDF to refer to both a library and a format.
The US e�ort to create a national evaluated nuclear data library led to formation of the Cross Section
Evaluation Working Group (CSEWG) in the 1960s. This body standardized the ENDF format, which is
used to store evaluated nuclear data �les, and created the US ENDF/B library that contains the set of data
evaluations currently recommended by CSEWG. Each update of the ENDF/B library receives a unique
identi�er (discussed below). While ENDF began as a US e�ort, over time other data centers have adopted
the ENDF storage format for their own use (this international standardization has encouraged and facilitated
many collaborations). The ENDF-6 format [47] (note that the Arabic number 6 indicates the ENDF format
version) has become the international standard for storing evaluated nuclear data and is used by data centers
in Europe, Japan, China, Russia, Korea and elsewhere. The user should be aware that there are many
evaluated nuclear data libraries of which ENDF/B is only one.

It is worth discussing the ENDF/B library for a moment. The US-based CSEWG meets once a year to
discuss and approve changes to the ENDF/B library. In order to track the updates to the ENDF/B library,
the following notation has been adopted. The �/B� in ENDF/B is used to indicate the US data library as
recommended by CSEWG. There was at one time an ENDF/A that was a repository for other, possibly
useful, data. However, this is no longer used. The major version of the library is indicated by a Roman
numeral, e.g. ENDF/B-V or ENDF/B-VI. Changes in the major version are generally tied to changes in the
standard cross sections. Many cross-section measurements are made relative to the standard cross sections,
e.g. elastic scattering o� hydrogen or the 235U(n,f) cross section. When one of the standard cross sections is
changed, the evaluated data that were based on that standard must be updated. Within a major release,
revisions are generally indicated as ENDF/B-VI.2 or ENDF/B-VI.6 where the �.2� and �.6� indicate release 2
and release 6, respectively. A release indicates that some evaluations have been revised, added or deleted.
Users should note that neither a major release nor an interim release guarantee that a particular evaluation
has been updated. In fact, only a few evaluations change in each release and often the change is limited to
a certain energy region. This numbering scheme simply indicates that something within the data library
has changed. It is up to the user to read the accompanying documentation to determine exactly what, if
anything, changed. Each ACE table provided with the MCNP package is listed in [45] where its lineage
(e.g. ENDF/B-V.0 or ENDF/B-VI.2) is given. The ENDF/B evaluations are available through the National
Nuclear Data Center at Brookhaven National Laboratory [http://www.nndc.bnl.gov/].

In addition to the ENDF/B library, many other data centers provide libraries of evaluated data. These
include the Japanese Atomic Energy Research Institute's (JAERI) JENDL library, the European JEFF library
maintained by the Nuclear Energy Agency (NEA), the Chinese Nuclear Data Center's (CNDC) CENDL
library, and the Russian BOFOD library. Other libraries also exist. These centers may provide processed
versions of their library in MCNP ACE format. Contact the appropriate center for more information.

In recent years the primary evaluated source of neutron interaction data provided as part of the MCNP
code package has been the ENDF/B library (i.e. ENDF/B-V and ENDF/B-VI). However, these have
been supplemented with evaluated neutron interaction data tables from other sources, in particular data
from Lawrence Livermore National Laboratory's Evaluated Nuclear Data Library (ENDL) library [ 8] and
supplemental evaluations performed in the Nuclear Physics Group in the Theoretical Division at Los Alamos
[11� 13]. The package also includes older evaluations from previous versions of ENDF/B, ENDL, the Los
Alamos Master Data File [48], and the Atomic Weapons Research Establishment in Great Britain.

The MCNP code does not access evaluated data directly from the ENDF format; these data must �rst be
processed into ACE format. The very complex processing codes used for this purpose include NJOY [15, 16]
for evaluated data in ENDF format and MCPOINT [49] for evaluated data in the ENDL format.
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Data on the MCNP neutron interaction tables include cross sections and emission distributions for secondary
particles. Cross sections for all reactions given in the evaluated data are speci�ed. For a particular table,
the cross sections for each reaction are given on one energy grid that is su�ciently dense that linear-linear
interpolation between points reproduces the evaluated cross sections within a speci�ed tolerance. Over the
years this tolerance has been tightened as computer memory has increased. In general, the tables currently
available have cross sections that are reproduced to a tolerance of 1% or less, although many recent tables
have been created with tolerances of 0.1%. Depending primarily on the number of resolved resonances for
each isotope, the resulting energy grid may contain up to� 100,000 points (see [45] for information about
speci�c tables).

Angular distributions for neutron (and photonuclear) collisions are given in each table for all reactions emitting
neutrons or photons (note that older neutron tables may not include photon distributions). The distributions
are typically given in the center-of-mass system for elastic scattering and discrete-level inelastic scattering.
Other distributions may be given in either the center-of-mass or laboratory system as speci�ed by the ENDF-6
scattering law from which they are derived. Angular distributions are given on a reaction-dependent grid of
incident energies.

The sampled angle of scattering uniquely determines the secondary energy for elastic scattering and discrete-
level inelastic scattering. For other inelastic reactions, energy distributions of the scattered particles are
provided in each table. As with angular distributions, the energy distributions are given on a reaction-
dependent grid of incident energies. The energy and angle of particles scattered by inelastic collisions is
sampled in a stochastic manner such that the overall emission distribution and energy are preserved for many
collisions but not necessarily for any single collision.

When neutron evaluations contain data about secondary photon production, that information appears in
the MCNP neutron interaction tables. Many processed data sets contain photon production cross sections,
photon angular distributions, and photon energy distributions for each neutron reaction that produces
secondary photons. However, the user should be aware that not all evaluations include this information and
the information is sometimes approximate, e.g. individual gamma lines may be lumped into average photon
emission bins.

Other miscellaneous information on the neutron (and photonuclear) interaction tables includes the atomic
weight ratio of the target nucleus, the Q-values of each reaction, and� data (the average number of neutrons
per �ssion) for �ssionable isotopes. In many cases both prompt and total� are given. Total � is the default
and the TOTNU card can be used to change the default.

Approximations must be made when processing an evaluated data set into ACE format. As mentioned above,
cross sections are reproduced to within a certain tolerance, generally less than 1%. Until recently, evaluated
angular distributions for non-isotropic secondary particles could only be approximated on ACE tables by 32
equally probable cosine bins. This approximation is extremely fast to use but may not adequately represent a
distribution originally given as a 20th -order Legendre polynomial. Starting with the MCNP code, version 4C,
tabular angular distributions may be used to represent the scattering angle with a tolerance generally between
0.1% to 1% or better. On the whole, the approximations within more recent ACE tables are small, and
MCNP interaction data tables for neutron (and photonuclear) collisions are extremely faithful representations
of the original evaluated data.

Discrete-reaction tables are identical to continuous-energy tables except that in the discrete reaction tables
all cross sections have been averaged into 262 groups. The averaging is done with a �at weighting function.
This is not a multigroup representation; the cross sections are simply given as histograms rather than as
continuous curves. The remaining data (angular distributions, energy distributions, � , etc.) are identical
in discrete-reaction and continuous-energy neutron tables. Discrete-reaction tables have been provided in
the past as a method of shrinking the required data storage to enhance the ability to run the MCNP code
on small machines or in a time-sharing environment. Given the advances in computing speed and storage,
they are no longer necessary and should not be used. There original purpose was for preliminary scoping
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studies. They were never recommended as a substitute for the continuous-energy tables when performing
�nal calculations.

The matter of how to select the appropriate neutron interaction tables for your calculation is now discussed.
Multiple tables for the same isotope are di�erentiated by the �nn� evaluation identi�er portion of the ZAID.
The easiest choice for the user is not to enter the nn at all. If no identi�er nn is entered, the MCNP code will
select the �rst match found in the xsdir �le. The xsdir �le provided as part of the MCNP package contains
the evaluations in the recommended (by the nuclear data team at LANL) order. Thus, the user can select
the currently recommended table by entering only the ZZZAAA portion (without the nn) of the ZAID on the
Mn card. The default nnX can be changed for all isotopes of a material by using the NLIB keyword entry on
the Mm card. Given the NLIB option, the MCNP code will choose only tables with the given nn identi�er.
However, if a speci�c table is desired, the MCNP code will always use the table requested by a fully speci�ed
ZAID, i.e. ZZZAAA.nnX.

Careful users will want to think about what neutron interaction tables to choose. There is, unfortunately, no
strict formula for choosing the tables. The following guidelines and observations are the best that can be
o�ered:

1. Users should, in general, use the most recent data available. The nuclear data evaluation community
works hard to continually update these libraries with the most faithful representations of the cross
sections and emission distributions.

2. Consider checking the sensitivity of the results to various sets of nuclear data. Try, for example, a
calculation with ENDF/B cross sections, and then another with ENDL cross sections. If the results of
a problem are extremely sensitive to the choice of nuclear data, it is advisable to �nd out why.

3. Consider di�erences in evaluators' philosophies. The Physical Data Group at Livermore is justly proud
of its extensive cross-section e�orts; their evaluations manifest a philosophy of reproducing the data
with the fewest number of points. Livermore evaluations are available mainly in the �.40C� series. We
at Los Alamos are particularly proud of the evaluation work being carried out in the Nuclear Data
team; generally, these evaluations are the most complex because they are the most thorough.

4. Be aware of the neutron energy spectrum in your problem. For high-energy problems, the �thinned�
and discrete reaction data are probably not bad approximations. Conversely, it is essential to use the
most detailed continuous-energy set available for problems in�uenced strongly by transport through the
resonance region.

5. Check the temperature at which various data tables have been processed. Do not use a set that is
Doppler broadened to 3,000 K for a room temperature calculation.

6. For a coupled neutron/photon problem, be careful that the tables you choose have photon production
data available. If possible, use the more-recent sets that have been processed into expanded photon
production format.

7. Users should be aware of the di�erences between the �.50C� series of data tables and the �.51C� series.
Both are derived from ENDF/B-V. The �.50C� series is the most faithful reproduction of the evaluated
data. The �.51C� series, also called the �thinned� series, has been processed with a less rigid tolerance
than the �.50C� series. As with discrete reaction data tables, although not to the same extent, users
should be careful when using the �thinned� data for transport through the resonance region.

8. In general, use the best data available. It is understood that the latest evaluations tend to be more
complex and therefore require more memory and longer execution times. If you are limited by available
memory, try to use smaller data tables such as thinned or discrete-reaction for the minor isotopes in the
calculation. Discrete reaction data tables might be used for a parameter study, followed by a calculation
with the full continuous-energy data tables for con�rmation.

In conclusion, the additional time necessary to choose appropriate neutron interaction data tables rather
than simply to accept the defaults often will be rewarded by increased understanding of your calculation.

LA-UR-22-30006, Rev. 1 62 of 1078 Theory & User Manual



Chapter 2. Geometry, Data, Physics, and Mathematics 2.3. Cross Sections

2.3.2 Photon Interaction Data

Photon interaction cross sections are required for all photon problems. Photon interactions can now account
for both photoatomic and photonuclear events. Because these events are di�erent in nature, i.e. elemental
versus isotopic, the data are stored on separate tables.

Photoatomic data are stored on ACE tables that use ZAIDs with the form ZZZ000.nnP. There are currently
four photoatomic interaction data libraries: nn equal 01, 02, 03 and 04.

The �01p� ACE tables were introduced in 1982 and combine data from several sources. The incoherent,
coherent, photoelectric and pair production cross sections, the coherent form factors, and incoherent scattering
function for this data set come from two sources. ForZ equal to 84, 85, 87, 88, 89, 91, and 93, these values
are based on the compilation of Storm and Israel [50] and include data for incident photon energies from
1 keV to 15 MeV. For all other elements fromZ equal to 1 through 94, the data are based on ENDF/B-IV33
and include data for incident photon energies from 1 keV to 100 MeV. Fluorescence data forZ equal to 1
through 94 are taken from work by Everett and Cashwell [51] as derived from multiple sources.

The �02p� ACE tables were introduced in 1993 and are an extension of the �01p� to higher incident energies
[52]. Below 10 MeV the data are identical to the �01p� data (i.e. the cross sections, form factors, scattering
function, and �uorescence data in this region are identical). From 10 MeV to the top of the table (either 15
or 100 MeV, depending on the table) the cross-section values are smoothly transitioned from the �01p� values
to the values from the Livermore Evaluated Photon Data Library (EPDL89) [ 9]. Above this transition region,
the cross section values are derived from the EPDL89 data and are given for incident energies up to 100 GeV.
The pair production threshold was also corrected for some tables.

The �03p� ACE tables were introduced in 2002 and are an extension of the �02p� tables to include additional
data. The energy of a photon after an incoherent (Compton) collision is a function of the momentum of
the bound electron involved in the collision. To calculate this e�ect (which is seen as a broadening of the
Compton peak), it is necessary to know the probability with which a photon interacts with an electron from
a particular shell and the momentum pro�le for the electrons of each shell. The probabilities and momentum
pro�le data of Biggs et al. [53] are included in the �03p� tables. All other data in the �03p� are identical to
the �02p� data. The ability to use the new data for broadening of the Compton scattering energy requires
MCNP5 or later; however, these tables are compatible with older versions of the code (you simply will not
access or use the new data).

The �04p� ACE tables were introduced in 2002 and contain the �rst completely new data set since 1982. These
tables were processed from the ENDF/B-VI.8 library. The ENDF/B-VI.8 photoatomic and atomic relaxation
data are in turn based upon the EPDL97 [54] library. They include incoherent, coherent, photoelectric and
pair production cross sections for incident energies from 1 keV to 100 GeV andZ equal to 1 to 100. They
also include coherent form factors, incoherent scattering functions, and �uorescence data derived from the
ENDF/B-VI.8 data. It should be noted that the form factor and scattering data have been evaluated and
are hard-coded in the MCNP code (in the GETXST subroutine). The �uorescence data use the traditional
scheme de�ned by Everett and Cashwell [51] but updated and consistent with the new data. Also included
are the bound electron momenta of Biggs et al. [53] (i.e. identical to those data in the �03p� tables). This is
the recommended data set. More information on the �04p� ACE tables can be found in [55].

For each element the photoatomic interaction libraries contain an energy grid�explicitly including the
photoelectric edges and the pair production threshold�the incoherent, coherent, photoelectric and pair
production cross sections (all stored as the logarithm of the value to facilitate log-log interpolation). The
total cross section is not stored; instead it is calculated from the partial cross sections as needed. The energy
grid for each table is tailored speci�cally for that element. The average material heating due to photon
scattering is calculated by the processing code and included as a tabulation on the main energy grid. The
incoherent scattering function and coherent form factors are tabulated as a function of momentum transfer
on a prede�ned, �xed-momenta grid. Average �uorescence data (according to the scheme of Everett and
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Cashwell [51]) are also included. The most recent data (on the 03p and 04p libraries) also include momentum
pro�le data for broadening of the photon energy from Compton scattering from bound electrons.

The determination of directions and energies of atomically scattered photons requires information di�erent
from the sets of angular and energy distributions found on neutron interaction tables. The angular distribution
for �uorescence x-rays from the relaxation cascade after a photoelectric event is isotropic. The angular
distributions for coherent and incoherent scattering come from sampling the well-known Thomson and
Klein-Nishina formulas, respectively. By default, this sampling accounts for the form factor and scattering
function data at incident energies below 100 MeV. Above, 100 MeV (or at the user's request) the form factor
and scattering function data are ignored (a reasonable approximation for high-energy photons). The energy
of an incoherently scattered photon is calculated from the sampled scattering angle. If available, this energy
is modi�ed to account for the momentum of the bound electron.

Very few approximations are made in the various processing codes used to transfer photon data from ENDF
into the format of MCNP photon interaction tables. Cross sections are reproduced exactly as given (except
as the logarithm of the value). Form factors and scattering functions are reproduced as given; however, the
momentum transfer grid on which they are tabulated may be di�erent from that of the original evaluation.
Heating numbers are calculated values, not given in evaluated sets, but inferred from them. Fluorescence
data are calculated using the scheme developed by Everett and Cashwell [51].

Photonuclear data are stored on ACE tables that use ZAIDs with the form ZZZAAA.nnU. Photon interactions
can include photonuclear events. However, the current data distribution includes tables for only 13 nuclides.
Because of this, photonuclear physics must be explicitly turned on. If on, a table must be provided for each
nuclide of every material or a fatal error will occur and the simulation will not run. More than 150 other
photonuclear data evaluations exist; these were created as part of an IAEA collaboration [56].

Photonuclear interaction data describe nuclear events with speci�c isotopes. The reaction descriptions use
the same ENDF-6 format as used for neutron data. Their processing, storage as ACE tables, and sampling
in a simulation are completely analogous to what is done for neutrons. See the previous discussion of the
neutron data for more details. Note that the photonuclear data available so far are complete in the sense that
they provide secondary particle distributions for all light-particles, i.e. photons, neutrons, protons, alphas,
etc. At this time, the MCNP code makes use of the photon and neutron emission distributions.

The selection of photon interaction data has become more complicated. Let us �rst examine the simple cases.
Photon or photon/electron problems where photonuclear events are to be ignored (i.e. photonuclear physics
is explicitly o�) should specify the material composition on the Mn card by mass or weight fraction of each
element, i.e. using the form ZZZ000 to describe each element. Partial ZAID speci�cation, i.e. only ZZZ000
with no library evaluation number nn, will choose the default table (the �rst table listed in the xsdir �le).
This will be overridden if the evaluation identi�er nn is given by the PLIB option, e.g. PLIB=02p will select
all photoatomic tables for that material from the 02p data set. Specifying a full ZAID, e.g. 13000.03p, will
override any other selection and always result in selecting that speci�c table. The next most simple case is a
coupled neutron-photon problem that will explicitly ignore photonuclear events. In this case, one should
specify the material composition according to the rules discussed in the previous section on neutron data
tables. Given an isotopic material component, e.g. 13027, the appropriate elemental photoatomic table will
be selected, e.g. 13000. If no evaluation identi�er is given, the default (�rst) table from the xsdir �le will
be used. If a particular evaluation set is desired, the PLIB option on the Mn card may be used to select all
photoatomic tables from a given library. It is recommended in all cases that the photoatomic tables for any
given problem all be from the same library (these data sets are created in masse and thus are self-consistent
across a library).

The most complicated case for material de�nition is the selection of tables for coupled neutron-photon
problems where photonuclear events are not ignored. In such a case, the composition must be chosen based
on the availability of most appropriate isotopic neutron and photonuclear tables as needed for the speci�c
problem at hand. The MXn card may be used to accommodate mismatches in the availability of speci�c
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isotopes [Ÿ5.6.3]. As always, a fully speci�ed ZAID, e.g. 13027.24u, will ensure that a speci�c table is
selected. The PNLIB option on the material card may be used to select all photonuclear tables from a speci�c
evaluation set nn. Otherwise, the isotope ZZZAAA will select the �rst match in the xsdir �le. Note that if
no photonuclear table is available for the isotope ZZZAAA, the problem will report the error and will not
run. See the discussion in the description of theMXn card for more information [Ÿ5.6.3].

2.3.3 Electron Interaction Data

Electron interaction data tables are required both for problems in which electrons are actually transported,
and for photon problems in which the thick-target bremsstrahlung model is used. Electron data tables are
identi�ed by ZAIDs of the form ZZZ000.nnE, and are selected by default when the problem mode requires
them. There are two electron interaction data libraries: el (ZAID endings of .01e) andel03 (ZAID endings
of .03e).

The electron libraries contain data on an element-by-element basis for atomic numbers fromZ equal 1 to
94. The library data contain energies for tabulation, radiative stopping power parameters, bremsstrahlung
production cross sections, bremsstrahlung energy distributions, K-edge energies, Auger electron production
energies, parameters for the evaluation of the Goudsmit-Saunderson theory for angular de�ections based on
the Riley cross-section calculation, and Mott correction factors to the Rutherford cross sections also used
in the Goudsmit-Saunderson theory. Theel03 library also includes the atomic data of Carlson used in the
density e�ect calculation. Internal to the code at run-time, data are calculated for electron stopping powers
and ranges, K x-ray production probabilities, knock-on probabilities, bremsstrahlung angular distributions,
and the Landau-Blunck-Leisegang theory of energy-loss �uctuations. Theel03 library is derived from the
ITS3.0 code system [57]. Discussions of the theoretical basis for these data and references to the relevant
literature are presented in [Ÿ2.4.5].

The hierarchy rules for electron cross sections require that each material must use the same electron library.
If a speci�c ZAID is selected on a material card, such as specifying ZZZ000.01E, that choice of library will be
used as the default for all elements in that material. Alternatively, the default electron library for a given
material can be chosen by specifying ELIB = nnE on the M card. In the absence of any speci�cation, the
MCNP code will use the �rst electron data table listed in the xsdir �le for the relevant element.

o Caution

Under no circumstances should data tables from di�erent libraries be speci�ed for use in the same
material (e.g., "m6 12000.01e1 20000.03e1" should not be used). This will result in a fatal error as
reported at run time. Overriding this error with a FATAL option will result in unreliable results.

2.3.4 Neutron Dosimetry Cross Sections

Dosimetry cross-section tables cannot be used for transport through material. These incomplete cross-section
sets provide energy-dependent neutron cross sections to the MCNP code for use as response functions with
the FM tally feature, e.g. they may be used in the calculation of a reaction rate. ZAIDs for dosimetry
tables are of the form ZZZAAA.nnY. Remember, dosimetry cross-section tables have no e�ect on the particle
transport of a problem.

The available dosimetry cross sections are from three sources: ENDF/B-V Dosimetry Tape 531, ENDF/B-V
Activation Tape 532, and ACTL [ 10]�an evaluated neutron activation cross-section library from the Lawrence
Livermore National Laboratory. Various codes have been used to process evaluated dosimetry data into the
format of MCNP dosimetry tables.
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Data on dosimetry tables are simply energy-cross-section pairs for one or more reactions. The energy grids
for all reactions are independent of each other. Interpolation between adjacent energy points can be speci�ed
as histogram, linear-linear, linear-log, log-linear, or log-log. With the exception of the tolerance involved in
any reconstruction of point-wise cross sections from resonance parameters, evaluated dosimetry cross sections
can be reproduced on the MCNP data tables with no approximation.

ZAIDs for dosimetry tables must be entered on material cards that are referenced byFM cards; under no
circumstances may a material card specifying dosimetry data tables be referenced by a cell card. The complete
ZAID, ZZZAAA.nnY, must be given; there are no defaults for dosimetry tables.

2.3.5 Neutron Thermal S(�; � ) Tables

Thermal S(�; � ) tables are not required, but they are essential to get correct answers in problems involving
neutron thermalization. The thermal scattering library based on ENDF/V-VIII.0 provides the material
identi�ers for use on the MTn card(s). The data on these material identi�er tables encompass those required
for a complete representation of thermal neutron scattering by molecules and crystalline solids. The source of
S(�; � ) data is a special set of ENDF tapes [58]. The THERMR and ACER modules of the NJOY [ 15, 16]
system have been used to process the evaluated thermal data into a format appropriate for the MCNP code.

Data are for neutron energies generally less than 4 eV. Cross sections are tabulated on table-dependent
energy grids; inelastic scattering cross sections are always given and elastic scattering cross sections are
sometimes given. Correlated energy-angle distributions are provided for inelastically scattered neutrons.
A set of equally probable �nal energies is tabulated for each of several initial energies. Further, a set of
equally probable cosines or cosine bins is tabulated for each combination of initial and �nal energies. Elastic
scattering data can be derived from either an incoherent or a coherent approximation. In the incoherent
case, equally probable cosines or cosine bins are tabulated for each of several incident neutron energies. In
the coherent case, scattering cosines are determined from a set of Bragg energies derived from the lattice
parameters. During processing, approximations to the evaluated data are made when constructing equally
probable energy and cosine distributions.

2.3.6 Multigroup Tables

Multigroup cross-section libraries are the only libraries allowed in multi-group/adjoint problems. Neutron
multigroup problems cannot be supplemented withS(�; � ) thermal libraries; the thermal e�ects must be
included in the multigroup neutron library. Photon problems cannot be supplemented with electron libraries;
the electrons must be part of the multigroup photon library. The form of the ZAID is ZZZAAA.nnM for
neutrons (or other particles masquerading as neutrons) or ZZZAAA.nnG for photons.

Although continuous-energy data are more accurate than multigroup data, the multigroup option is useful for
a number of important applications: (1) comparison of deterministic (SN ) transport codes to Monte Carlo;
(2) use of adjoint calculations in problems where the adjoint method is more e�cient; (3) generation of adjoint
importance functions; (4) cross-section sensitivity studies; (5) solution of problems for which continuous-cross
sections are unavailable; and (6) charged particle transport using the Boltzmann-Fokker-Planck algorithm in
which charged particles masquerade as neutrons.

Multigroup cross sections are very problem dependent. Some multigroup libraries are available from the
Transport Methods Group at Los Alamos but must be used with caution. Users are encouraged to generate
or get their own multigroup libraries and then use the supplementary code CRSRD [59] to convert them
to the MCNP code format. Reference [59] describes the conversion procedure. This report also describes
how to use both the multigroup and adjoint methods in the MCNP code and presents several benchmark
calculations demonstrating the validity and e�ectiveness of the multigroup/adjoint method.

LA-UR-22-30006, Rev. 1 66 of 1078 Theory & User Manual



Chapter 2. Geometry, Data, Physics, and Mathematics 2.4. Physics

To generate cross-section tables for electron/photon transport problems that will use the multigroup Boltzmann-
Fokker-Planck algorithm [60], the CEPXS [61� 63] code developed by Sandia National Laboratory and available
from RSICC can be used. The CEPXS manuals describe the algorithms and physics database upon which the
code is based; the physics package is essentially the same as ITS version 2.1. The keyword �MONTE-CARLO�
is needed in the CEPXS input �le to generate a cross-section library suitable for input into CRSRD; this
undocumented feature of the CEPXS code should be approached with caution.

2.4 Physics

The physics of neutron, photon, and electron interactions is the very essence of the MCNP code. A review
of charged particle transport capabilities in the MCNP code can be found in [43]. For a description of all
high-energy event generators used by the MCNP code, see [64]. This section may be considered a software
requirements document in that it describes the equations the MCNP code is intended to solve. All the
sampling schemes essential to the random walk are presented or referenced. But �rst, particle weight and
particle tracks, two concepts that are important for setting up the input and for understanding the output,
are discussed in the following sections.

2.4.1 Statistical Weight

At the most fundamental level, weight is a tally multiplier. That is, the tally contribution for a weight w
is the unit weight tally contribution multiplied by w. Weight is an adjustment for deviating from a direct
physical simulation of the transport process. Note that if a Monte Carlo code always sampled from the same
distributions as nature does, then the Monte Carlo code would have the same mean and variance as seen
in nature. Quite often, the natural variance is unacceptably high and the Monte Carlo code modi�es the
sampling using some form of �variance reduction� [Ÿ2.7]. The variance reduction methods use weighting
schemes to produce the same mean as the natural transport process, but with lower calculational variance
than the natural variance of the transport process.

With the exception of the pulse height tally ( F8 ), all tallies in the MCNP code are made by individual
particles. In this case, weight is assigned to the individual particles as a �particle weight.� The manual
discusses the �particle weight� cases �rst and afterward discusses the weight associated with theF8 tally.

2.4.1.1 Particle Weight

If the MCNP code were used only to simulate exactly physical transport, then each MCNP particle would
represent one physical particle and would have unit weight. However, for computational e�ciency, the MCNP
code allows many techniques that do not exactly simulate physical transport. For instance, each MCNP
particle might represent a number w of particles emitted from a source. This numberw is the initial weight
of the MCNP particle. The w physical particles all would have di�erent random walks, but the one MCNP
particle representing thesew physical particles will only have one random walk. Clearly this is not an exact
simulation; however, the true number of physical particles is preserved in the MCNP code in the sense of
statistical averages and therefore in the limit of a large number of MCNP source particles (of course including
particle production or loss if they occur). Each MCNP particle result is multiplied by the weight so that the
full results of the w physical particles represented by each MCNP particle are exhibited in the �nal results
(tallies). This procedure allows users to normalize their calculations to whatever source strength they desire.
The default normalization is a weight of one per MCNP source particle. A second normalization to the
number of Monte Carlo histories is made in the results so that the expected means will be independent of the
number of source particles actually initiated in the MCNP calculation.
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The utility of particle weight, however, goes far beyond simply normalizing the source. Every Monte Carlo
biasing technique alters the probabilities of random walks executed by the particles. The purpose of such
biasing techniques is to increase the number of particles that sample some part of the problem of special
interest (1) without increasing (and sometimes actually decreasing) the sampling of less interesting parts of
the problem, and (2) without erroneously a�ecting the expected mean physical result (tally). This procedure,
properly applied, increases precision in the desired result compared to an unbiased calculation taking the
same computing time. For example, if an event is made

p
2 times as likely to occur (as it would occur without

biasing), the tally ought to be multiplied by 1=
p

2 so that the expected average tally is una�ected. This tally
multiplication can be accomplished by multiplying the particle weight by 1=

p
2 because the tally contribution

by a particle is always multiplied by the particle weight in the MCNP code. Note that weights need not be
integers.

In short, particle weight is a number carried along with each MCNP particle, representing that particle's
relative contribution to the �nal tallies. Its magnitude is determined to ensure that whenever the MCNP
code deviates from an exact simulation of the physics, the expected physical result nonetheless is preserved in
the sense of statistical averages, and therefore in the limit of large MCNP particle numbers. Its utility is in
the manipulation of the number of particles, sampling just a part of the problem to achieve the same results
and precision, obviating a full unbiased calculation which has a longer computing time.

2.4.1.2 Pulse-height Tally ( F8 ) Weight

Unlike other tallies in the MCNP code, the pulse height tally depends on a collection of particles instead of
just individual particles. Because of this, a weight is assigned to each collection of tallying particles. It is this
�collective weight� that multiplies the F8 tally, not the particle weight.

When variance reduction is used, a �collective weight� is assigned to every collection of particles. If variance
reduction techniques have made a collection's random walkq times as likely as without variance reduction,
then the collective weight is multiplied by 1=q so that the expected F8 tally of the collection is preserved.
The interested reader should consult [65, 66] for more details.

2.4.2 Particle Tracks

When a particle starts out from a source, a particle track is created. If that track is split 2 for 1 at a splitting
surface or collision, a second track is created and there are now two tracks from the original source particle,
each with half the single track weight. If one of the tracks has an (n,2n) reaction, one more track is started for
a total of three. A track refers to each component of a source particle during its history. Track length tallies
use the length of a track in a given cell to determine a quantity of interest, such as �uence, �ux, or energy
deposition. Tracks crossing surfaces are used to calculate �uence, �ux, or pulse-height energy deposition
(surface estimators). Tracks undergoing collisions are used to calculate multiplication and criticality (collision
estimators).

Within a given cell of �xed composition, the method of sampling a collision along the track is determined
using the following theory. The probability of a �rst collision for a particle between l and l + d l along its line
of �ight is given by

p(l)dl = exp( � � t l )� t dl; (2.2)

where � t is the macroscopic total cross section of the medium and is interpreted as the probability per unit
length of a collision. Setting � the random number on [0; 1), to be

� =

l�

0

exp(� � t s)� t ds = 1 � exp(� � t l ); (2.3)
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it follows that
l = �

1
� t

ln(1 � � ): (2.4)

However, because1 � � is distributed in the same manner as� and hence may be replaced by� , we obtain
the well-known expression for the distance to collision,

l = �
1

� t
ln( � ): (2.5)

2.4.3 Neutron Interactions

When a particle (representing any number of neutrons, depending upon the particle weight) collides with a
nucleus, the following sequence occurs:

1. the collision nuclide is identi�ed;

2. either the S(�; � ) treatment is used or the velocity of the target nucleus is sampled for low-energy
neutrons;

3. photons are optionally generated for later transport;

4. neutron capture (that is, neutron disappearance by any process) is modeled;

5. if the energy of the neutron is low enough and an appropriateS(�; � ) table is present, the collision is
modeled by theS(�; � ) treatment;

6. otherwise, either elastic scattering or an inelastic reaction (including �ssion) is selected, and the new
energy and direction of the outgoing track(s) are determined.

2.4.3.1 Selection of Collision Nuclide

If there are n di�erent nuclides forming the material in which the collision occurred, and if � is a random
number on the unit interval [0; 1), then the kth nuclide is chosen as the collision nuclide if

k � 1X

i =1

� t ;i < �
nX

i =1

� t ;i �
kX

i =1

� t ;i ; (2.6)

where � t ;i is the macroscopic total cross section of nuclidei . If the energy of the neutron is low enough
(below about 4 eV) and the appropriate S(�; � ) table is present, the total cross section is the sum of the
capture cross section from the regular cross-section table and the elastic and inelastic scattering cross sections
from the S(�; � ) table. Otherwise, the total cross section is taken from the regular cross-section table and is
adjusted for thermal e�ects [Ÿ2.4.3.2].

2.4.3.2 Free Gas Thermal Treatment

A collision between a neutron and an atom is a�ected by the thermal motion of the atom, and in most cases,
the collision is also a�ected by the presence of other atoms nearby. The thermal motion cannot be ignored in
many applications of the MCNP code without serious error. The e�ects of nearby atoms are also important
in some applications. The MCNP code uses a thermal treatment based on the free gas approximation to
account for the thermal motion. It also has an explicit S(�; � ) capability that takes into account the e�ects
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of chemical binding and crystal structure for incident neutron energies below about 4 eV, but is available for
only a limited number of substances and temperatures. TheS(�; � ) capability is described in Ÿ2.4.3.6.

The free gas thermal treatment in the MCNP code assumes that the medium is a free gas and also that, in
the range of atomic weight and neutron energy where thermal e�ects are signi�cant, the elastic scattering
cross section at zero temperature is nearly independent of the energy of the neutron and that the reaction
cross sections are nearly independent of temperature. These assumptions allow the MCNP code to have a
thermal treatment of neutron collisions that runs almost as fast as a completely non-thermal treatment and
that is adequate for most practical problems.

With the above assumptions, the free gas thermal treatment consists of adjusting the elastic cross section and
taking into account the velocity of the target nucleus when the kinematics of a collision are being calculated.
The MCNP free gas thermal treatment e�ectively applies to elastic scattering only.

Cross-section libraries processed by NJOY already include Doppler broadening of elastic, capture, �ssion, and
other low-threshold absorption cross-sections (< 1 eV). Inelastic cross sections are never broadened by NJOY.

2.4.3.2.1 Adjusting the Elastic Cross Section

The �rst aspect of the free gas thermal treatment is to adjust the zero-temperature elastic cross section by
raising it by the factor

F =
�
1 + 0:5=a2�

erf(a) + exp
�
� a2�

=
�
a
p

�
�
; (2.7)

where a =
p

AE=kT , A is the atomic weight of the nucleus,E is the incident neutron energy, andT is the
material temperature. For speed,F is approximated by F = 1+0 :5=a2 when a � 2 and by linear interpolation
in a table of 51 values ofaF when a < 2. Both approximations have relative errors less than 0.0001. The
total cross section also is increased by the amount of the increase in the elastic cross section.

The adjustment to the elastic and total cross sections is done partly in the setup of a problem and partly
during the actual transport calculation. No adjustment is made if the elastic cross section in the data library
was already processed to the temperature that is needed in the problem. If all of the cells that contain a
particular nuclide have the same temperature, which is constant in time, that is di�erent from the temperature
of the library, the elastic and total cross sections for that nuclide are adjusted to that temperature during the
setup so that the transport will run a little faster. Otherwise, these cross sections are reduced, if necessary,
to zero temperature during the setup and the thermal adjustment is made when the cross sections are used.
For speed, the thermal adjustment is omitted if the neutron energy is greater than500kT=A. At that energy
the adjustment of the elastic cross section would be less than 0.1%.

Note that this adjustment of the nuclear data is less accurate than the one used within NJOY, as NJOY
will handle more reactions and does not assume constant data. As such, it is recommended to use datasets
Doppler-broadened to the temperature of interest, rather than relying on this adjustment. See the discussion
in the TMP card for more information.

2.4.3.2.2 Sampling the Velocity of the Target Nucleus

The second aspect of the free gas thermal treatment takes into account the velocity of the target nucleus
when the kinematics of a collision are being calculated. The target velocity is sampled and subtracted from
the velocity of the neutron to get the relative velocity. The collision is sampled in the target-at-rest frame
and the outgoing velocities are transformed to the laboratory frame by adding the target velocity.

There are di�erent schools of thought as to whether the relative energy between the neutron and target,E r ,
or the laboratory frame incident neutron energy (target-at-rest), Eo, should be used for all the kinematics of
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the collision. Eo is used in the MCNP code to obtain the distance-to-collision, select the collision nuclide,
determine energy cuto�s, generate photons, generate �ssion sites for the next generation of aKCODEcriticality
problem, for S(�; � ) scattering, and for capture. E r is used for everything else in the collision process, namely
elastic and inelastic scattering, including �ssion and (n; xn) reactions. It is shown in Eq. (2.8) that E r is
based uponvrel : that is based upon the elastic scattering cross section, and, therefore,E r is truly valid
only for elastic scatter. However, the only signi�cant thermal reactions for stable isotopes are absorption,
elastic scattering, and �ssion. 181Ta has a 6 keV threshold inelastic reaction; all other stable isotopes have
higher inelastic thresholds. Metastable nuclides like242m Am have inelastic reactions all the way down to zero,
but these inelastic reaction cross sections are neither constant nor1=v cross sections and these nuclides are
generally too massive to be a�ected by the thermal treatment anyway. Furthermore, �ssion is very insensitive
to incident neutron energy at low energies. The �ssion secondary energy and angle distributions are nearly
�at or constant for incident energies below about 500 keV. Therefore, it makes no signi�cant di�erence if E r

is used only for elastic scatter or for other inelastic collisions as well. At thermal energies, whetherE r or Eo

is used only makes a di�erence for elastic scattering.

If the energy of the neutron is greater than400kT and the target is not 1H, the velocity of the target is set
to zero. Otherwise, the target velocity is sampled as follows. The free-gas kernel is a thermal interaction
model that results in a good approximation to the thermal �ux spectrum in a variety of applications and can
be sampled without tables. The e�ective scattering cross section in the laboratory system for a neutron of
kinetic energy E is

� e�
s (E ) =

1
vn

�
� s(vrel :)vrel :p(V )dv

d� t

2
: (2.8)

Here, vrel : is the relative velocity between a neutron moving with a scalar velocityvn and a target nucleus
moving with a scalar velocity V , and � t is the cosine of the angle between the neutron and the target
direction-of-�ight vectors. The equation for vrel : is

vrel : =
�
v2

n + V 2 � 2vn V � t
� 1=2

: (2.9)

The scattering cross section at the relative velocity is denoted by� s(vrel :), and p(V ) is the probability density
function for the Maxwellian distribution of target velocities,

p(V ) =
4

� 1=2
� 3V 2 exp

�
� � 2V 2�

; (2.10)

with � de�ned as

� =
�

AM n

2kT

� 1=2

; (2.11)

whereA is the mass of a target nucleus in units of the neutron mass,M n is the neutron mass in MeV-sh2/cm 2,
and kT is the equilibrium temperature of the target nuclei in MeV.

The most probable scalar velocityV of the target nuclei is 1=� , which corresponds to a kinetic energy ofkT
for the target nuclei. This is not the average kinetic energy of the nuclei, which is3kT=2. The quantity that
the MCNP code expects on theTMPn input card is kT and not just T [Ÿ5.7.5]. Note thatkT is not a function
of the particle mass and is therefore the kinetic energy at the most probable velocity for particles of any mass.

Equation (2.8) implies that the probability distribution for a target velocity V and cosine� t is

P(V; � t ) =
� s(vrel :)vrel :p(V )

2� e� :
s (E )vn

: (2.12)

It is assumed that the variation of � s(v) with target velocity can be ignored. The justi�cation for this
approximation is that (1) for light nuclei, � s(vrel :) is slowly varying with velocity, and (2) for heavy nuclei,
where � s(vrel :) can vary rapidly, the moderating e�ect of scattering is small so that the consequences of the
approximation will be negligible. As a result of the approximation, the probability distribution actually used
is

P(V; � t ) =
p

v2
n V 2 � 2V vn � t V 2 exp

�
� � 2V 2�

: (2.13)
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Note that the above expression can be written as

P(V; � t ) =

p
v2

n V 2 � 2V vn � t

vn + V

�
V 3 exp

�
� � 2V 2�

+ vn V 2 exp
�
� � 2V 2��

: (2.14)

As a consequence, the following algorithm is used to sample the target velocity.

1. With probability � = 1=(1 + (
p

��v n =2)), the target velocity V is sampled from the distribution

P1(V ) = 2 � 4V 3 exp
�
� � 2V 2�

: (2.15)

The transformation V =
p

y=� reduces this distribution to the sampling distribution P(y) = y exp(� y).
The MCNP code actually codes1 � � .

2. With probability 1 � � , the target velocity is sampled from the distribution

P2(V ) =
�
4� 3=

p
�

�
V 2 exp

�
� � 2V 2�

: (2.16)

Substituting V = y=� reduces the distribution to the sampling distribution for y to

P(y) =
�
4=

p
�

�
y2 exp

�
� y2�

:

3. The cosine of the angle between the neutron velocity and the target velocity is sampled uniformly on
the interval � 1 � � t � 1.

4. The rejection function R(V; � t ) is computed using

R(V; � t ) =

p
v2

n + V 2 � 2V vn � t

vn + V
� 1: (2.17)

With probability R(V; � t ), the sampling is accepted; otherwise, the sampling is rejected and the procedure
is repeated. The minimum e�ciency of this rejection algorithm corresponding to assumingV = vn = vrel :

averaged over� t is

� 1
� 1 R(vrel : ; � t )d� t

� 1
� 1 d� t

=
1
2

1�

� 1

p
v2

rel : + v2
rel : � 2v2

rel : � t

2vrel :
d� t =

p
2

4

1�

� 1

p
1 � � t d� t =

2
3

; (2.18)

which approaches 100% as either the incident neutron energy approaches zero or becomes much larger than
kT .

For more accuracy, the probability distribution in Equation 2.12 can be directly sampled without the constant
cross-section approximation. This is enabled through theDBRC card. This is not enabled by default.

2.4.3.3 Optional Generation of Photons

Photons are generated if the problem is a combined neutron/photon run and if the collision nuclide has a
nonzero photon production cross section. The number of photons produced is a function of neutron weight,
neutron source weight, photon weight limits (entries on the PWT card), photon production cross section,
neutron total cross section, cell importance, and the importance of the neutron source cell. No more than 10
photons may be born from any neutron collision. In a KCODEcalculation, secondary photon production from
neutrons is turned o� during the inactive cycles.
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Because of the many low-weight photons typically created by neutron collisions, Russian roulette is played
for particles with weight below the bounds speci�ed on the PWT card, resulting in fewer particles, each having
a larger weight. The created photon weight before Russian roulette is

Wp =
Wn � 


� t
; (2.19)

where

Wp is the photon weight,

Wn is the neutron weight,

� 
 is the photon production cross section, and

� t is the total neutron cross section.

Both � 
 and � t are evaluated at the incoming neutron energy without the e�ects of the thermal free gas
treatment because nonelastic cross sections are assumed independent of temperature.

The Russian roulette game is played according to neutron cell importances for the collision and source cell.
For a photon produced in cell i where the minimum weight set on the PWTcard is W min :

i , let I i be the neutron
importance in cell i and let I s be the neutron importance in the source cell. IfWp > W min :

i I s=I i , one or more
photons will be produced. The number of photons created isNp , where

Np =
Wp I i

5W min :
i I s

+ 1 ; Np � 10: (2.20)

Each photon is stored in the bank with weight Wp=Np . If Wp < W min :
i I s=I i , Russian roulette is played and

the photon survives with probability Wp I i =
�
W min :

i I s
�

and is given the weightW min :
i I s=I i .

If weight windows are not used and if the weight of the starting neutrons is not unity, setting all the W min :
i

on the PWT card to negative values will make the photon minimum weight relative to the neutron source
weight. This will make the number of photons being created roughly proportional to the biased collision
rate of neutrons. It is recommended for most applications that negative numbers be used and be chosen to
produce from one to four photons per source neutron. The default values forW min :

i on the PWT card are � 1,
which should be adequate for most problems using cell importances.

If energy-independent weight windows are used, the entries on thePWT card should be the same as on the
WWN1:p card. If energy-dependent photon weight windows are used, the entries on thePWT card should be the
minimum WWNn:p entry for each cell, where n refers to the photon weight window energy group. This will
cause most photons to be born within the weight window bounds.

Any photons generated at neutron collision sites are temporarily stored in the bank. There are two methods
for determining the exiting energies and directions, depending on the form in which the processed photon
production data are stored in a library. The �rst method has the evaluated photon production data processed
into an �expanded format� [67]. In this format, energy-dependent cross sections, energy distributions, and
angular distributions are explicitly provided for every photon-producing neutron interaction. In the second
method, used with data processed from older evaluations, the evaluated photon production data have been
collapsed so that the only information about secondary photons is in a matrix of 20 equally probable photon
energies for each of 30 incident neutron energy groups. The sampling techniques used in each method are
now described.
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2.4.3.3.1 Expanded Photon Production Method

In the expanded photon production method, the reactionn responsible for producing the photon is sampled
from

n � 1X

i =1

� i < �
NX

i =1

� i �
nX

i =1

� i ; (2.21)

where � is a random number on the interval [0; 1), N is the number of photon production reactions, and� i

is the photon production cross section for reactioni at the incident neutron energy. Note that there is no
correlation between the sampling of the type of photon production reaction and the sampling of the type of
neutron reaction described in Ÿ2.4.3.5.

Just as every neutron reaction (for example,(n; 2n)) has associated energy-dependent angular and energy
distributions for the secondary neutrons, every photon production reaction (for example,(n; p
 )) has associated
energy-dependent angular and energy distributions for the secondary photons. The photon distributions are
sampled in much the same manner as their counterpart neutron distributions.

All non-isotropic secondary photon angular distributions are represented by either 32 equiprobable cosine
bins or by a tabulated angular distribution. The distributions are given at a number of incident neutron
energies. All photon-scattering cosines are sampled in the laboratory system. The sampling procedure is
identical to that described for secondary neutrons in Ÿ2.4.3.5.1.

Secondary photon energy distributions are also a function of incident neutron energy. There are two
representations of secondary photon energy distributions allowed in ENDF-6 format: tabulated spectra and
discrete (line) photons. Correspondingly, there are two laws used in the MCNP code for the determination of
secondary photon energies. Law 4 provides for representation of a tabulated photon spectra possibly including
discrete lines. Law 2 is used solely for discrete photons. These laws are described in more detail beginning in
Ÿ2.4.3.5.4.1.

The expanded photon production method has clear advantages over the original30 � 20 matrix method
[Ÿ2.4.3.3.2]. In coupled neutron/photon problems, users should attempt to specify data sets that contain
photon production data in expanded format. Such data sets are identi�ed by �yes� entries in the GPD column
in [45]. However, it should be noted that the evaluations from which these data are processed may not include
all discrete lines of interest; evaluators may have binned sets of photons into average spectra that simply
preserve the energy distribution.

2.4.3.3.2 30� 20 Photon Production Method

For lack of better terminology, we will refer to the photon production data contained in older libraries as
� 30� 20 photon production� data. In contrast to expanded photon production data, there is no information
about individual photon production reactions in the 30� 20 data. This method is not used in modern tables
and is only included to maintain backwards compatibility for very old data libraries.

The only secondary photon data are a30� 20 matrix of photon energies; that is, for each of 30 incident neutron
energy groups there are 20 equally probable exiting photon energies. There is no information regarding
secondary photon angular distributions; therefore, all photons are taken to be produced isotropically in the
laboratory system.

There are several problems associated with30 � 20 photon production data. The 30 � 20 matrix is an
inadequate representation of the actual spectrum of photons produced. In particular, discrete photon lines
are not well represented, and the high-energy tail of a photon continuum energy distribution is not well
sampled. Also, the multigroup representation is not consistent with the continuous-energy nature of the
MCNP code. Finally, not all photons should be produced isotropically. None of these problems exists for
data processed into the expanded photon production format.
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2.4.3.4 Absorption

Absorption is treated in one of two ways: analog or implicit. Either way, the incident incoming neutron
energy does not include the relative velocity of the target nucleus from the free gas thermal treatment because
nonelastic reaction cross sections are assumed to be nearly independent of temperature. That is, only the
scattering cross section is a�ected by the free gas thermal treatment. The terms �absorption� and �capture�
are used interchangeably for non-�ssile nuclides, both meaning(n; 0n). For �ssile nuclides, �absorption�
includes both capture and �ssion reactions.

2.4.3.4.1 Analog Absorption

In analog absorption, the particle is killed with probability � a=� t , where � a and � t are the absorption and
total cross sections, respectively, of the collision nuclide at the incoming neutron energy. The absorption cross
section is specially de�ned for the MCNP code as the sum of all(n; x) cross sections, wherex is anything
except neutrons. Thus� a is the sum of � n;g, � n;a, � n;d , � f , etc. For all particles killed by analog absorption,
the entire particle energy and weight are deposited in the collision cell.

2.4.3.4.2 Implicit Absorption

For implicit absorption, also called survival biasing, the neutron weight Wn is reduced toW 0
n as

W 0
n =

�
1 �

� a

� t

�
Wn : (2.22)

If the new weight W 0
n is below the problem weight cuto� (speci�ed on the CUT card), Russian roulette is

played, resulting overall in fewer particles with larger weight.

For implicit absorption, a fraction � a=� t of the incident particle weight and energy is deposited in the collision
cell corresponding to that portion of the particle that was absorbed. Implicit absorption is the default method
of neutron absorption in the MCNP code.

2.4.3.4.3 Implicit Absorption Along a Flight Path

Implicit absorption also can be done continuously along the �ight path of a particle trajectory as is the
common practice in astrophysics. In this case, the distance to scatter, rather than the distance to collision, is
sampled. The distance to scatter is

l = �
1

� s
ln(1 � � ): (2.23)

The particle weight at the scattering point is reduced to account for the expected absorption along the �ight
path,

W 0 = W exp(� � al ); (2.24)

where

W 0 is the reduced weight after expected absorption along �ight path,

W is the weight at the start of the �ight path,

� a is the absorption cross section,

LA-UR-22-30006, Rev. 1 75 of 1078 Theory & User Manual



Chapter 2. Geometry, Data, Physics, and Mathematics 2.4. Physics

� s is the scattering cross section,

� t is the total cross section (� a + � s),

l is the distance to scatter, and

� is a uniformly sampled random number.

Implicit absorption along a �ight path is a special form of the exponential transformation coupled with
implicit absorption at collisions. See the description of the exponential transform in Ÿ5.12.7. The path length
is stretched in the direction of the particle, � = 1 , and the stretching parameter isp = � a=� t . Using these
values the exponential transform and implicit absorption at collisions yield the identical equations as does
implicit absorption along a �ight path.

Implicit absorption along a �ight path is invoked in the MCNP code as a special option of the exponential
transform variance reduction method. It is most useful in highly absorbing media, that is, � a=� t ! 1. When
almost every collision results in absorption, it is very ine�cient to sample distance to collision. However,
implicit absorption along a �ight path is discouraged. In highly absorbing media, there is usually a superior
set of exponential transform parameters. In relatively non-absorbing media, it is better to sample the distance
to collision than the distance to scatter.

2.4.3.5 Elastic and Inelastic Scattering

If the conditions for the S(�; � ) treatment are not met, the particle undergoes either an elastic or inelastic
collision. The selection of an elastic collision is made with the probability

� el

� in + � el
=

� el

� t � � a
; (2.25)

where

� el is the elastic scattering cross section.

� in is the inelastic cross section, including any neutron-out process such as (n,n'), (n,f), (n,np), etc.

� a is the absorption cross section;� a(n; x ), where x 6= n , that is, all neutron disappearing reactions.

� t is the total cross section,� t = � el + � in + � a.

Both � el and � t are adjusted for the free gas thermal treatment at thermal energies.

The selection of an inelastic collision is made with the remaining probability,

� in

� t � � a

If the collision is determined to be inelastic, the type of inelastic reaction,n, is sampled from

n � 1X

i =1

� i < �
NX

i =1

� i �
nX

i =1

� i ; (2.26)

where � is a random number on the interval [0; 1), N is the number of inelastic reactions, and� i is the i th

inelastic reaction cross section at the incident neutron energy.
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Directions and energies of all outgoing particles from neutron collisions are determined by sampling data from
the appropriate cross-section table. Angular distributions are provided and sampled for scattered neutrons
resulting from either elastic or discrete-level inelastic events; the scattered neutron energy is then calculated
from two-body kinematics. For other reaction types, a variety of data representations is possible. These
representations may be divided into two types: (a) the outgoing energy and outgoing angle are sampled
independently of each other, or (b) the outgoing energy and outgoing angle are correlated. In the latter case,
the outgoing energy may be speci�ed as a function of the sampled outgoing angle, or the outgoing angle may
be speci�ed as a function of the sampled outgoing energy. Details of the possible data representations and
sampling schemes are provided in the following sections.

2.4.3.5.1 Sampling of Angular and Energy Distributions

The cosine of the angle between incident and exiting particle directions,� , is sampled from angular distribution
tables in the collision nuclide's cross-section library. The cosines are either in the center-of-mass or target-at-
rest system, depending on the type of reaction. Data are provided at a number of incident neutron energies.
If E is the incident neutron energy, if En is the energy of tablen, and if En +1 is the energy of tablen + 1 ,
then a value of � is sampled from table n + 1 with probability (E � En )=(En +1 � En ) and from table n
with probability (En +1 � E )=(En +1 � En ). There are two options in the MCNP code for representing and
sampling a non-isotropic scattering cosine. The �rst method involves the use of 32 equally probable cosine
bins. The second method is to sample a tabulated distribution as a function of� .

When the method with 32 equiprobable cosine bins is employed, a random number� on the interval [0; 1) is
used to select thei th cosine bin such that I = 32 + 1 . The value of � is then computed as

� = � i + (32 � � i )( � i +1 � � i ): (2.27)

The method of 32 equiprobable cosine bins accurately represents high-probability regions of the scattering
probability; however, it can be a very crude approximation in low-probability regions. For example, it
accurately represents the forward scattering in a highly forward-peaked distribution, but may represent all
the back angle scattering using only one or a few bins.

A new, more rigorous angular distribution representation was implemented in MCNP4C. This new repre-
sentation features a tabulation of the probability density function (PDF) as a function of the cosine of the
scattering angle. Interpolation of the PDF between cosine values may be either by histogram or linear-linear
interpolation. The new tabulated angular distribution allows more accurate representations of original
evaluated distributions (typically given as a set of Legendre polynomials) in both high-probability and
low-probability regions.

Tabular angular distributions are equivalent to tabular energy distribution (as de�ned using ENDF Law 4)
except that the sampled value is the cosine of the scattering angle, and discrete lines are not allowed. For
each incident neutron energyE i there is a pointer to a table of cosines� i;k , probability density functions pi;k ,
and cumulative density functions ci;k . The index i and the interpolation fraction r are found on the incident
energy grid for the incident energyE in such that

E i < E in < E i +1 (2.28)

and
E in = E i + r (E i +1 � E i ): (2.29)

A random number, � 1, on the unit interval [0; 1) is used to sample a cosine bink from the cumulative density
function

cl;k < � 1 < c l;k +1 ; (2.30)
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where l = i if � 2 > r and l = i + 1 if � 2 < r , and � 2 is a random number on the unit interval. For histogram
interpolation the sampled cosine is

� 0 = � l;k +
� 1 � cl;k

pl:k
: (2.31)

For linear-linear interpolation the sampled cosine is

� 0 = � l;k +

8
>><

>>:

r

P2
l;k + 2

h
pl;k +1 � pl;k

� l;k +1 � � l;k

i
(� 1 � cl;k ) � pl;k

h
pl;k +1 � pl;k

� l;k +1 � � l;k

i

9
>>=

>>;
(2.32)

If the emitted angular distribution for some incident neutron energy is isotropic, � is chosen from� = � 0,
where � 0 is a random number on the interval [� 1; 1). Strictly, in the MCNP code, random numbers are always
furnished on the interval (0; 1). Thus, to compute � 0 on (� 1; 1) we calculate� 0 = 2 � � 1, where � is a random
number on (0; 1).

The ENDF-6 format also has various formalisms to describe correlated secondary energy-angle spectra. These
are discussed later in this chapter.

For elastic scattering, inelastic level scattering, and some ENDF-6 inelastic reactions, the scattering cosine is
chosen in the center-of-mass system. Conversion must then be made to� lab , the cosine in the target-at-rest
system. For other inelastic reactions, the scattering cosine is sampled directly in the target-at-rest system.

The incident particle direction cosines(uo; vo; wo) are rotated to new outgoing target-at-rest system cosines
(u; v; w) through a polar angle whose cosine is� lab , and through an azimuthal angle sampled uniformly. For
random numbers � 1 and � 2 on the interval [� 1; 1) with rejection criterion � 1� 2 � 1, the rotation scheme is
[page 54 of 20]

u = uo� lab +

p
1 � � 2

lab (� 1uowo � � 2vo)
p

(� 2
1 + � 2

2 )(1 � w2
o)

; (2.33a)

v = vo� lab +

p
1 � � 2

lab (� 1vowo + � 2uo)
p

(� 2
1 + � 2

2 )(1 � w2
o)

; (2.33b)

w = wo� lab �
� 1

p
(1 � � 2

lab )(1 � w2
o)

p
(� 2

1 + � 2
2 )

: (2.33c)

If 1 � w2
o � 0, then

u = uo� lab +

p
1 � � 2

lab (� 1uovo + � 2wo)
p

(� 2
1 + � 2

2 )(1 � v2
o)

; (2.34a)

v = vo� lab �
� 1

p
(1 � � 2

lab )(1 � v2
o)

p
(� 2

1 + � 2
2 )

; (2.34b)

w = wo� lab +

p
1 � � 2

lab (� 1wovo � � 2uo)
p

(� 2
1 + � 2

2 )(1 � v2
o)

: (2.34c)

If the scattering distribution is isotropic in the target-at-rest system, it is possible to use an even simpler
formulation that takes advantage of the exiting direction cosines,(u; v; w), being independent of the incident
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direction cosines,(uo; vo; wo). In this case,

u = 2 � 2
1 + 2 � 2

2 � 1; (2.35a)

v = � 1

s
1 � u2

� 2
1 + � 2

2
; (2.35b)

w = � 2

s
1 � u2

� 2
1 + � 2

2
; (2.35c)

where � 1 and � 2 are rejected if � 2
1 + � 2

2 > 1.

2.4.3.5.2 Energy from Elastic Scattering

Once the particle direction is sampled from the appropriate angular distribution tables, then the exiting
energy,Eout , is dictated by two-body kinematics,

Eout =
1
2

E in [(1 � � )� cm + 1 + � ]

= E in

"
1 + A2 + 2A� cm

(1 + A)2

#

; (2.36)

where E in is the incident neutron energy, � cm is the center-of-mass cosine of the angle between incident and
exiting particle directions,

� =
�

A � 1
A + 1

� 2

; (2.37)

and A is the mass of nuclide nucleus in units of the mass of a neutron (atomic weight ratio).

2.4.3.5.3 Inelastic Reactions

The treatment of inelastic scattering depends upon the particular inelastic reaction chosen. Inelastic reactions
are de�ned as (n; y) reactions such as(n; n0), (n; 2n), (n; f), (n; n0� ) in which y includes at least one neutron.

For many inelastic reactions, such as(n; 2n), more than one neutron can be emitted for each incident neutron.
The weight of each exiting particle is always the same as the weight of the incident particle minus any
implicit capture. The energy of exiting particles is governed by various scattering laws that are sampled
independently from the cross-section �les for each exiting particle. Which law is used is prescribed by the
particular cross-section evaluation used. In fact, more than one law can be speci�ed, and the particular one
used at a particular time is decided with a random number. In an(n; 2n) reaction, for example, the �rst
particle emitted may have an energy sampled from one or more laws, but the second particle emitted may
have an energy sampled from one or more di�erent laws, depending upon speci�cations in the nuclear data
library. Because emerging energy and scattering angle is sampled independently for each particle, there is no
correlation between the emerging particles. Hence energy is not conserved in an individual reaction because,
for example, a 14-MeV particle could conceivably produce two 12-MeV particles in a single reaction. The net
e�ect of many particle histories is unbiased because on the average the correct amount of energy is emitted.
Results are biased only when quantities that depend upon the correlation between the emerging particles are
being estimated.

Users should note that the MCNP code follows a very particular convention. The exiting particle energy
and direction are always given in the target-at-rest (laboratory) coordinate system. For the kinematical
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calculations in the MCNP code to be performed correctly, the angular distributions for elastic, discrete
inelastic level scattering, and some ENDF-6 inelastic reactions must be given in the center-of-mass system,
and the angular distributions for all other reactions must be given in the target-at-rest system. The MCNP
code does not stop if this convention is not adhered to, but the results will be erroneous. In the checking of
the cross-section libraries prepared for the MCNP code at Los Alamos, however, careful attention has been
paid to ensure that these conventions are followed.

The exiting particle energy and direction in the target-at-rest (laboratory) coordinate system are related to
the center-of-mass energy and direction as [19]:

E 0 = E 0
cm +

"
E + 2 � cm (A + 1)

p
EE 0

cm

(A + 1) 2

#

(2.38)

and

� lab = � cm

r
E 0

cm

E 0 +
1

A + 1

r
E
E 0; (2.39)

where

E0 is the exiting particle energy (laboratory),

E0cm is the exiting particle energy (center-of-mass),

E is the incident particle energy (laboratory),

� cm is the cosine of center-of-mass scattering angle,

� lab is the cosine of laboratory scattering angle, and

A is the atomic weight ratio (mass of nucleus divided by mass of incident particle).

For point detectors it is necessary to convert

p(� lab ) = p(� cm )
d� cm

d� lab
(2.40)

where

� cm = � lab

s
E 0

E 0
cm

�
1

A + 1

s
E

E 0
cm

(2.41)

and

d� cm

d� lab
=

E 0=E0
cmq

E 0

E 0
cm

� � cm
A +1

q
E

E 0
cm

=

q
E 0

E 0
cm

1 � � cm
A +1

q
E
E 0

: (2.42)
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2.4.3.5.4 Non-�ssion Inelastic Scattering and Emission Laws

Non-�ssion inelastic reactions are handled di�erently from �ssion inelastic reactions. For each non-�ssion
reaction Np particles are emitted, whereNp is an integer quantity speci�ed for each reaction in the cross-
section data library of the collision nuclide. The direction of each emitted particle is independently sampled
from the appropriate angular distribution table, as was described earlier. The energy of each emitted particle
is independently sampled from one of the following scattering or emission laws. Energy and angle are
correlated only for ENDF-6 Laws 44 and 67. For completeness and convenience, all the laws are listed
together, regardless of whether the law is appropriate for non-�ssion inelastic scattering (for example, Law 3),
�ssion spectra (for example, Law 11), both (for example, Law 9), or neutron-induced photon production (for
example, Law 2). The conversion from center-of-mass to target-at-rest (laboratory) coordinate systems is
given in the above equations.

2.4.3.5.4.1 Law 1 (ENDF Law 1): Equiprobable Energy Bins

The index i and the interpolation fraction r are found on the incident energy grid for the incident energyE in

such that
E i < E in < E i +1 (2.43)

and
E in = E i + r (E i +1 � E i ): (2.44)

A random number on the unit interval � 1 is used to select an equiprobable energy bink from the K
equiprobable outgoing energiesE i;k where

k = � i K + 1 : (2.45)

Then scaled interpolation is used with random numbers� 2 and � 3 on the unit interval. Let

E1 = E i; 1 + r (E i +1 ;1 � E i; 1) (2.46)

and
EK = E i;K + r (E i +1 ;K � E i;K ) (2.47)

and

l =

(
i � 3 > r
i + 1 � 3 < r

(2.48)

and
E 0 = E l;k + � 2(E l;k +1 � E l:k ) (2.49)

then

Eout = E1 +
(E 0 � E l; 1)(EK � E1)

E l;k � E l; 1
: (2.50)

2.4.3.5.4.2 Law 2: Discrete Photon Energy

The value provided in the library is Eg. The secondary photon energyEout is either

Eout = Eg (2.51)

for non-primary photons or
Eout = Eg + [ A=(A + 1)] E in (2.52)

for primary photons, where A is the atomic weight to neutron weight ratio of the target and E in is the
incident neutron energy.
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2.4.3.5.4.3 Law 3 (ENDF Law 3): Inelastic Scattering (n; n0) From Nuclear Levels

The value provided in the library is Q and as a result

Eout =
�

A
A + 1

� 2�
E in �

Q(A + 1)
A

�
: (2.53)

2.4.3.5.4.4 Law 4 (ENDF Law 4): Tabular Distribution

For each incident neutron energyE i there is a pointer to a table of secondary energiesE i;k , probability
density functions pi;k , and cumulative density functions ci;k . The index i and the interpolation fraction r are
found on the incident energy grid for the incident energyE in such that

E i < E in < E i +1 (2.54)

and
E in = E i + r (E i +1 � E i ): (2.55)

The tabular distribution at each E i may be composed of discrete lines, a continuous spectra, or a mixture
of discrete lines superimposed on a continuous background. If discrete lines are present, there must be the
same number of lines (given one per bin) in each table. The sampling of the emission energy for the discrete
lines (if present) is handled separately from the sampling for the continuous spectrum (if present). A random
number, � 1, on the unit interval [0; 1) is used to sample a second energy bink from the cumulative density
function.

If discrete lines are present, the algorithm �rst checks to see if the sampled bin is within the discrete line
portion of the table as determined by

ci;k + r (ci +1 ;k � ci;k ) < � 1 < c i;k +1 + r (ci +1 ;k +1 � ci;k +1 ):

If this condition is met, then the sampled energyE 0 for the discrete line is interpolated between incident
energy grids as

E 0 = E i;k + r (E i +1 ;k � E i;k ): (2.56)

If a discrete line has been sampled, the energy sampling is �nished. If a discrete line has not been sampled,
the secondary energy is sampled from the remaining continuous background.

For continuous distributions, the secondary energy bink is sampled from

cl:k < � 1 < c l:k +1 ; (2.57)

where l = i if � 2 > r and l = i + 1 if � 2 < r , and � 2 is a random number on the unit interval. For histogram
interpolation the sampled energy is

E 0 = E l;k +
� 1 � cl:k

pl;k
: (2.58)

For linear-linear interpolation the sampled energy is
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E 0 = E l;k +

8
>><

>>:

r

P2
l;k + 2

h
pl;k +1 � pl;k

E l;k +1 � E l;k

i
(� 1 � cl;k ) � pl;k

h
pl;k +1 � pl;k

E l;k +1 � E l;k

i

9
>>=

>>;
: (2.59)

The secondary energy is then interpolated between the incident energy binsi and i + 1 to properly preserve
thresholds. Let

E1 = E i; 1 + r (E i +1 ;1 � E i; 1) (2.60)

and
EK = E i;K + r (E i +1 ;K � E i;K ) (2.61)

then

Eout = E1 +
(E 0 � E l; 1)(EK � E1)

(E l;K � E l; 1)
: (2.62)

The �nal step is to adjust the energy from the center-of-mass system to the laboratory system, if the energies
were given in the center-of-mass system.

Law 4 is an independent distribution, i.e. the emission energy and angle are not correlated. The outgoing angle
is selected from the angular distribution as described in Ÿ2.4.3.5.1. Data tables built using this methodology
are designed to sample the distribution correctly in a statistical sense and will not necessarily sample the
exact distribution for any speci�c collision.

2.4.3.5.4.5 Law 5 (ENDF Law 5): General Evaporation Spectrum

The function g(x) is tabulated versus� and the energy is tabulated versus incident energyE in . The law is
then

f (E in ! Eout ) = g
�

Eout

T(E in )

�
: (2.63)

This density function is sampled by Eout = � (� )T(E in ), where T(E in ) is a tabulated function of the incident
energy andc(� ) is a table of equiprobable� values.

2.4.3.5.4.6 Law 7 (ENDF Law 7): Simple Maxwell Fission Spectrum

The law is

f (E in ! Eout ) = C
p

Eout exp
�

�
Eout

T(E in )

�
: (2.64)

The nuclear temperature T(E in ) is a tabulated function of the incident energy. The normalization constant
C is given by

C � 1 = T 3=2

" � p
�

2

�
erf

 r
E in � U

T

!

�

r
E in � U

T
exp

�
�

E in � U
T

� #

; (2.65)

where U is a constant provided in the library and limits Eout to 0 � Eout � E � U. In the MCNP code this
density function is sampled by the rejection scheme

Eout = � T(E in )
�

� 2
1 ln( � 3)
� 2

1 + � 2
2

+ ln( � 4)
�
; (2.66)

where � 1, � 2, � 3, and � 4 are random numbers on the unit interval. � 1 and � 2 are rejected if � 2
1 + � 2

2 > 1.
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2.4.3.5.4.7 Law 9 (ENDF Law 9): Evaporation Spectrum

The law is

f (E in ! Eout ) = CEout exp
�

�
Eout

T(E in )

�
; (2.67)

where the nuclear temperatureT(E in ) is a tabulated function of the incident energy. The energyU is provided
in the library and is assigned so thatEout is limited by 0 � Eout � E in � U. The normalization constant C
is given by

C � 1 = T2
�
1 � exp

�
�

E in � U
T

��
1 +

E in � U
T

��
: (2.68)

In the MCNP code this density function is sampled by

Eout = � T(E in ) ln( � 1� 2); (2.69)

where � 1 and � 2 are random numbers on the unit interval, and � 1 and � 2 are rejected if Eout > E in � U.

2.4.3.5.4.8 Law 11 (ENDF Law 11): Energy Dependent Watt Spectrum

The law is

f (E in ! Eout ) = C exp
�

�
Eout

a(E in )

�
sinh

� p
b(E in )Eout

�
: (2.70)

The constants a and b are tabulated functions of incident energy andU is a constant from the library. The
normalization constant C is given by

C � 1 =
1
2

r
�a 3b

4
exp

�
ab
4

� "

erf

 r
E in � U

a
�

r
ab
4

!

+ erf

 r
E in � U

a
+

r
ab
4

!#

� a exp
�

�
E in � U

a

�
sinh

� p
b(E in � U)

�
; (2.71)

where the constantU limits the range of outgoing energy so that0 � Eout � E in � U. This density function
is sampled as follows. Let

g =

s �
1 +

ab
8

� 2

� 1 +
�

1 +
ab
8

�
: (2.72)

Then Eout = � agln( � 1). Eout is rejected if

[(1 � g)(1 � ln( � 1)) � ln( � 2)]2 > bE out ; (2.73)

where � 1 and � 2 are random numbers on the unit interval.

2.4.3.5.4.9 Law 22 (UK Law 2): Tabular Linear Functions of Incident Energy Out

Tables of Pi;j , Ci;j , and Ti;j are given at a number of incident energiesE i . If E i � E in < E i +1 then the i th

Pi;j , Ci;j , and Ti;j tables are used and

Eout = Ci;k (E in � Ti;k ); (2.74)

where k is chosen according to
kX

j =1

Pi;j < � �
k+1X

j =1

Pi;j ;

where � is a random number on the unit interval [0; 1).
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2.4.3.5.4.10 Law 24 (UK Law 6): Equiprobable Energy Multipliers

The law is
Eout = E in T(E in ): (2.75)

The library provides a table of K equiprobable energy multipliersTi;k for a grid of incident neutron energies
E i . For incident energy E in such that

E i < E in < E i +1 :

The random numbers � 1 and � 2 on the unit interval are used to �nd T with

k = � 1K + 1 (2.76)

and
T = Ti;k + � 2(Ti;k +1 � Ti;k ) (2.77)

so
Eout = E in T (2.78)

2.4.3.5.4.11 Law 44 Tabular Distribution (ENDF Law=1 Lang=2): Kalbach-87 Correlated
Energy-angle Scattering)

Law 44 is an extension of Law 4. For each incident energyE i there is a pointer to a table of secondary energies
E i;k , probability density functions pi;k , cumulative density functions ci;k , pre-compound fractionsRi;k , and
angular distribution slope values A i;k . The secondary emission energy is found exactly as stated in the Law 4
description in Ÿ2.4.3.5.4.4. Unlike Law 4, Law 44 includes a correlated angular distribution associated with
each incident energyE i as given by the Kalbach parametersRi;k , and A i;k . Thus, the sampled emission
angle is dependent on the sampled emission energy.

The sampled values forR and A are interpolated on both the incident and outgoing energy grids. For discrete
spectra,

A = A i;k + r (A i +1 ;k � A i;k ) (2.79)

and
R = Ri;k + r (Ri +1 ;k � Ri;k ): (2.80)

For continuous spectra with histogram interpolation,

A = A i;k (2.81)

and
R = Ri;k (2.82)

For continuous spectra with linear-linear interpolation,

A = A l;k + ( A l;k +1 � A l;k )
E 0 � E l;k

E l;k +1 � E l;k
(2.83)

and

R = Rl;k + ( Rl;k +1 � Rl;k )
E 0 � E l;k

E l;k +1 � E l;k
: (2.84)
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The outgoing neutron center-of-mass scattering angle� is sampled from the Kalbach density function

p(�; E in ; Eout ) =
1
2

A
sinh(A)

[cosh(A� ) + R sinh(A� )] (2.85)

using the random numbers� 3 and � 4 on the unit interval as follows. If � 3 > R , then let

T = (2 � 4 � 1) sinh(A) (2.86)

and

� =
ln

�
T +

p
T2 + 1

�

A
; (2.87)

or if � 3 < R , then

� =
ln[� 4 exp(A) + (1 � � 4) exp(� A)]

A
: (2.88)

As with Law 4, the emission energy and angle are transformed from the center-of-mass to the laboratory
system as necessary.

2.4.3.5.4.12 Law 61 Tabular Distribution (ENDF Law=1 Lang=0, 12, or 14): Correlated
Energy-angle Scattering

Law 61 is an extension of Law 4. For each incident energyE i there is a pointer to a table of secondary
energiesE i;k , probability density functions pi;k , cumulative density functions ci;k , and pointers to tabulated
angular distributions L i;k . The secondary emission energy is found exactly as stated in the Law 4 description
in Ÿ2.4.3.5.4.4. Unlike Law 4, Law 61 includes a correlated angular distribution associated with each incident
energyE i as given by the tabular angular distribution located using the pointers L i;k . Thus, the sampled
emission angle is dependent on the sampled emission energy.

If the secondary distribution is given using histogram interpolation, the angular distribution located at L i;k

is used to sample the emission angle. If the secondary distribution is speci�ed as linear interpolation between
energy points, L i;k is chosen by selecting the bin closest to the randomly sampled cumulative distribution
function (CDF) point. If the value of L i;k is zero, the angle is sampled from an isotropic distribution as
described on page 78. If the value ofL i;k is positive, it points to a tabular angular distribution which is then
sampled as described on page 78.

As with Law 4, the emission energy and angle are transformed from the center-of-mass to the laboratory
system as necessary.

2.4.3.5.4.13 Law 66 (ENDF Law 6): N-body Phase Space Distribution

The phase space distribution for particlei in the center-of-mass coordinate system is:

Pi (�; E in ; T) = Cn

p
T(E max

i � T)3n= 2� 4; (2.89)

where all energies and angles are also in the center-of-mass system andE max
i is the maximum possible energy

for particle i , � , and T. T is used for calculatingEout . The Cn normalization constants for n = 3 ; 4; 5 are:

C3 =
4

� (E max
i )2 ; (2.90a)

C4 =
105

32(E max
i )

7=2
; (2.90b)

C5 =
256

14� (E max
i )5 : (2.90c)
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E max
i is a fraction of the energy available,Eavail , given as

E max
i =

M � mi

M
Eavail ; (2.91)

where M is the total mass of the n particles being treated, mi is the mass of particlei , and

Eavail =
mt

mp + mt
E in + Q; (2.92)

where mt is the target mass andmp is the projectile mass. For neutrons,

mt

mp + mt
=

A
A + 1

(2.93)

and for a total mass ratio Ap = M=m i ,
M � mi

M
=

Ap � 1
Ap

: (2.94)

Thus,

E max
i =

Ap � 1
Ap

�
A

A + 1
E in + Q

�
: (2.95)

The total mass Ap and the number of particles in the reaction n are provided in the data library. The
outgoing energy is sampled as follows.

Let � i , i = 1 ; 10 be random numbers on the unit interval. Then from rejection technique R28 from the Monte
Carlo Sampler [68], accept� 1 and � 2 if � 2

1 + � 2
2 � 1 and accept � 3 and � 4 if � 2

3 + � 2
4 � 1.

Then let

x =
� � 1 ln

�
� 2

1 + � 2
2

�

� 2
1 + � 2

2
� ln( � 9) (2.96)

y =

8
>><

>>:

� � 3 ln ( � 2
3 + � 2

4 )
� 2

3 + � 2
4

� ln( � 5) n = 3

� ln( � 5� 6� 7) n = 4
� � 3 ln ( � 2

3 + � 2
4 )

� 2
3 + � 2

4
� ln( � 5� 6� 7� 8) n = 5

(2.97)

and
T =

x
x + y

: (2.98)

Then
Eout = TEmax

i (2.99)

The cosine of the scattering angle is always sampled isotropically in the center-of-mass system using another
random number � 10 on the unit interval as

� = 2 � 10 � 1: (2.100)

2.4.3.5.4.14 Law 67 (ENDF Law 7): Correlated Energy-angle Scattering

For each incident neutron energy, �rst the exiting particle direction � is sampled as described in Ÿ2.4.3.5.1.
In other law data, �rst the exiting particle energy is sampled and then the angle is sampled. The indexi and
the interpolation fraction r are found on the incident energy grid for the incident energyE in such that

E i < E in < E i +1
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and
E in = E i + r (E i +1 � E i ): (2.101)

For each incident energyE i there is a table of exiting particle direction cosines� i;j and locators L i;j . This
table is searched to �nd which ones bracket� , namely,

� i;j < � < � i;j +1 : (2.102)

Then the secondary energy tables atL i;j and L i;j +1 are sampled for the outgoing particle energy. The
secondary energy tables consist of a secondary energy gridE i;j;k , probability density functions pi;j;k , and
cumulative density functions ci;j;k . A random number � 1 on the unit interval is used to pick between incident
energy indices: if� 1 < r then l = i + 1 ; otherwise, l = i . Two more random numbers� 2 and � 3 on the unit
interval are used to determine interpolation energies. As such,

E i;k =

(
E i;j +1 ;k ; m = j + 1 � 2 < � � � 1;j

� 1;j +1 � � i;j
; l = i

E i;j;k ; m = j � 2 � � � � 1;j

� 1;j +1 � � i;j
; l = i

: (2.103)

Similarly,

E i +1 ;k =

(
E i +1 ;j +1 ;k ; m = j + 1 � 3 < � � � i +1 ;j

� i +1 ;j +1 � � i +1 ;j
; l = i + 1

E i +1 ;j;k ; m = j � 3 � � � � i +1 ;j

� i +1 ;j +1 � � i +1 ;j
; l = i + 1

: (2.104)

A random number � 4 on the unit interval is used to sample a secondary energy bink from the cumulative
density function

cl;m;k < � 4 < c l;m;k +1 : (2.105)

For histogram interpolation the sampled energy is

E 0 = E l;m;k +
� 4 � cl;m;k

pl;m;k
: (2.106)

For linear-linear interpolation the sampled energy is

E 0 = E l;m;k +

8
>><

>>:

r

P2
l;m;k + 2

h
pl;m;k +1 � pl;m;k

E l;m;k +1 � E l;m;k

i
(� 4 � cl;m;k ) � pl;m;k

h
pl;m;k +1 � pl;m;k

E l;m;k +1 � E l;m;k

i

9
>>=

>>;
: (2.107)

The �nal outgoing energy Eout uses scaled interpolation. Let

E1 = E i; 1 + r (E i +1 ;1 � E i; 1) (2.108)

and
EK = E i;K + r (E i +1 ;K � E i;K ) (2.109)

then

Eout = E1 +
(E 0 � E l; 1)(EK � E1)

E l;K � E l; 1
: (2.110)

2.4.3.5.5 Emission from Fission

For any �ssion reaction a number of neutrons, n, is emitted according to the value of � (E in ). Depending on
the type of problem (�xed source or KCODE) and on user input ( TOTNU card), the MCNP code may use either
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prompt � p (E in ) or total � t (E in ). For either case, the average number of neutrons per �ssion,� (E in ), may be
a tabulated function of energy or a polynomial function of energy.

If DATAentry on the FMULT card is zero (default), then n is sampled betweenI (the largest integer less than
� (E in )) and I + 1 by

n =

(
I + 1 � � � (E in ) � 1
I � > � (E in ) � 1

; (2.111)

where � is a random number drawn from the unit interval.

If more microscopically correct �ssion neutron multiplicities are desired for �xed source problems, theDATA

entry on the FMULT card can be used to select which set of Gaussian widths are used to sample the actual
number of neutrons from �ssion that typically range from 0 to 7 or 8 [69]. For a given �ssion event, there is a
probability Pn that n neutrons are emitted. This distribution is generally called the neutron multiplicity
distribution. Fission neutron multiplicity distributions are known to be well reproduced by simple Gaussian
distributions [70],

P0 =
1

p
2�� 2

1=2�

�1

exp

 

�
(x � � + b)2

2� 2

!

dx; (2.112)

and

Pn 6=0 =
1

p
2�� 2

n + 1=2�

n � 1=2

exp

 

�
(x � � + b)2

2� 2

!

dx; (2.113)

where � is the mean multiplicity, b is a small adjustment to make the mean equal to� , and � is the Gaussian
width. For the range of realistic widths, the adjustment b can be accurately expressed as a single smooth
function of (� + 0 :5)=� [2]. To determine the value of � from experimental data, many authors have minimized
the chi-squared

� 2(� ) =
X

n

�
Pexp

n � Pn (� )
� Pexp

n

� 2

; (2.114)

where � Pexp
n is the uncertainty in the experimentally measured multiplicity distribution Pexp

n . The factorial
moments of the neutron multiplicity distribution ( � i =

P
Pn n!=(n � i )!) emitted by a multiplying sample

can be expressed as a function of the factorial moments for spontaneous and induced �ssion [71]. Therefore,
for many applications it is not necessary to know the details of the neutron multiplicity distribution, but it
is more important to know the corresponding �rst three factorial moments. A reevaluation of the existing
spontaneous �ssion and neutron induced �ssion data has been performed [2] where the widths of Gaussians are
adjusted to �t the measured second and third factorial moments. This reevaluation was done by minimizing
the chi-squared

� 2(� ) =
3X

i =2

�
� i (Pexp

n ) � � i (Pn (� ))
� � exp

i

� 2

: (2.115)

These results are summarized in Table 2.1. Despite the change in emphasis from the detailed shape to the
moments of the distributions, the inferred widths are little changed from those obtained by others. However,
by minimizing the chi-squared in Eq. (2.115) the inferred widths are guaranteed to be in reasonable agreement
with the measured second and third factorial moments. The widths obtained using Eq. (2.115) give Gaussian
distributions that reproduce the experimental second and third factorial moments to better than 0.6%. The
adjustment parameter b ensures that the �rst moment ( � ) is accurately reproduced. If the chi-squared in
Eq. (2.114) is used, then the second and third factorial moments can di�er from the experimental values by
as much as 10%.

Assuming that the widths of the multiplicity distributions are independent of the initial excitation energy
of the �ssioning system [2], the relationship between di�erent factorial moments is easily calculated as a
function of � . The corresponding calculated relationships between the �rst three factorial moments are in
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Table 2.1: Recommended Gaussian Widths [2] from Eq. (2.115)

Reaction �
233U(n,f) 1.070
235U(n,f) 1.088
238U(n,f) 1.116

239Pu(n,f) 1.140
241Pu(n,f) 1.150
238Pu SF� 1.135
240Pu SF 1.151
242Pu SF 1.161
242Cm SF 1.091
244Cm SF 1.103
246Cm SF 1.098
248Cm SF 1.108
250Cf SF 1.220
252Cf SF 1.245
254Cf SF 1.215
254Fm SF 1.246
� SF: Spontaneous Fission

good agreement with experimental neutron induced �ssion data up to an incoming neutron energy of 10 MeV
[2]. This implies that an energy independent width can be used with con�dence up to an incoming neutron
energy of at least 10 MeV. The Gaussian widths in Table 2.1 are used for �ssion multiplicity sampling in the
MCNP code when theDATAentry on the FMULT card is 1. Induced �ssion multiplicities for isotopes not listed
in Table 2.1 use a Gaussian width that is linearly dependent on the mass number of the �ssioning system [2].

The direction of each emitted neutron is sampled independently from the appropriate angular distribution
table by the procedure described in Ÿ2.4.3.5.1.

The energy of each �ssion neutron is determined from the appropriate emission law. These laws are discussed
in the preceding section. The MCNP code then models the transport of the �rst neutron out after storing all
other neutrons in the bank.

2.4.3.5.6 Prompt and Delayed Neutron Emission

If (1) the MCNP code is using � t , (2) the data for the collision isotope includes delayed-neutron spectra, and
(3) the use of detailed delayed-neutron data has not been preempted (on thePHYS:n card), then each �ssion
neutron is �rst determined by the MCNP code to be either a prompt �ssion neutron or a delayed �ssion
neutron. Assuming analog sampling, the type of emitted neutron is determined from the ratio of delayed
� (E in ) to total � t (E in ) where a delayed neutron is produced if

� �
� d (E in )
� t (E in )

(2.116)

and a prompt neutron is produced if

� >
� d (E in )
� t (E in )

; (2.117)

where � d is the expected number of delayed neutrons.

If the neutron is determined to be a prompt �ssion neutron, it is emitted instantaneously, and the emission
laws (angle and energy) speci�ed for prompt �ssion are sampled.
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If the neutron is determined to be a delayed �ssion neutron, then the MCNP code �rst samples for the decay
group by using the speci�ed abundances. Then, the time delay is sampled from the exponential density with
decay constant speci�ed for the sampled decay group.

Finally, the emission laws (angle and energy) speci�ed for that decay group are then sampled. Since the
functionality in the MCNP code to produce delayed neutrons using appropriate emission data is new, we
include next a somewhat more expanded description.

A small but important fraction (~1%) of the neutrons emitted in �ssion events are delayed neutrons emitted
as a result of �ssion-product decay at times later than prompt �ssion neutrons. the MCNP code users have
always been able to specify whether or not to include delayed �ssion neutrons by using either� t (prompt
plus delayed) or � p (prompt only). However, in versions of the MCNP code up through and including 4B, all
�ssion neutrons (whether prompt or delayed) were produced instantaneously and with an energy sampled
from the spectra speci�ed for prompt �ssion neutrons.

For many applications this approach is adequate. However, it is another example of a data approximation
that is unnecessary. Therefore, Versions 4C and later of the MCNP code allow delayed �ssion neutrons to be
sampled (either analog or biased) from time and energy spectra as speci�ed in nuclear data evaluations. The
libraries with detailed delayed �ssion neutron data are listed in [45] with a �yes� in the �DN� column.

The explicit sampling of a delayed-neutron spectrum implemented in MCNP4C has two e�ects. One is that
the delayed neutron spectra have the correct energy distribution; they tend to be softer than the prompt
spectra. The second is that experiments measuring neutron decay after a pulsed source can now be modeled
with the MCNP code because the delay in neutron emission following �ssion is properly accounted for. In
this treatment, a natural sampling of prompt and delayed neutrons is implemented as the default and an
additional delayed neutron biasing control is available to the user via the PHYS:n card. The biasing allows the
number of delayed neutrons produced to be increased arti�cially because of the low probability of a delayed
neutron occurrence. The delayed neutron treatment is intended to be used with theTOTNUcard in the MCNP
code, giving the user the �exibility to use the time-dependent treatment of delayed neutrons whenever the
delayed data are available.

The impact of sampling delayed-neutron energy spectra on reactivity calculations has been studied [72]. As
expected, most of the reactivity impacts are very small, although changes of 0.1-0.2% inke� were observed
for certain cases. Overall, inclusion of delayed-neutron spectra can be expected to produce small positive
reactivity changes for systems with signi�cant fast neutron leakage and small negative changes for some
systems in which a signi�cant fraction of the �ssions occurs in isotopes with an e�ective �ssion threshold
(e.g., 238U and 240Pu).

2.4.3.6 The S(�; � ) Treatment

The S(�; � ) thermal scattering treatment is a complete representation of thermal neutron scattering by
molecules and crystalline solids. Two processes are allowed: (1) inelastic scattering with cross section� in and
a coupled energy-angle representation derived from an ENDFS(�; � ) scattering law, and (2) elastic scattering
with no change in the outgoing neutron energy for solids with cross section� el and an angular treatment
derived from lattice parameters. The elastic scattering treatment is chosen with probability � el=(� el + � in ).
This thermal scattering treatment also allows the representation of scattering by multi-atomic molecules (for
example, BeO).

For the inelastic treatment, the distribution of secondary energies is represented by a set of equally probable
�nal energies (typically 16 or 32) for each member of a grid of initial energies from an upper limit of typically
4 eV down to 10-5 eV, along with a set of angular data for each initial and �nal energy. The selection of a
�nal energy E 0 given an initial energy E can be characterized by sampling from the distribution

p(E 0jE i < � < E i +1 ) =
1
N

NX

j =1

� [E 0 � �E i;j � (1 � � )E i +1 ;j ]; (2.118)
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where E i and E i +1 are adjacent elements on the initial energy grid,

� =
E i +1 � E
E i +1 � E i

; (2.119)

N is the number of equally probable �nal energies, andE i;j is the j th discrete �nal energy for incident energy
E i .

There are two allowed schemes for the selection of a scattering cosine following selection of a �nal energy and
�nal energy index j . In each case, the (i; j )th set of angular data is associated with the energy transition
E = E i ! E 0 = E i;j .

In the �rst scheme, the data consist of sets of equally probable discrete cosines� i;j;k for k = 1 ; : : : ; � with �
typically 4 or 8. An index k is selected with probability 1=� , and � is obtained by the relation

� = �� i;j;k + (1 � � )� i +1 ;j;k : (2.120)

In the second scheme, the data consist of bin boundaries of equally probable cosine bins. In this case, random
linear interpolation is used to select one set or the other, with� being the probability of selecting the set
corresponding to incident energyE i . The subsequent procedure consists of sampling for one of the equally
probable bins and then choosing� uniformly in the bin.

For elastic scattering, the above two angular representations are allowed for data derived by an incoherent
approximation. In this case, one set of angular data appears for each incident energy and is used with the
interpolation procedures on incident energy described above. For elastic scattering, when the data have been
derived in the coherent approximation, a completely di�erent representation occurs. In this case, the data
actually stored are the set of parametersD k , where

� eI =

(
D k =E Ebk � E < E bk+1

0 E < E B 1
(2.121)

and EBk are Bragg energies derived from the lattice parameters. For incident energyE such that EBk �
E � EBk +1 ,

Pi = D i =Dk ; i = 1 ; : : : ; k (2.122)

represents a discrete cumulative probability distribution that is sampled to obtain index i , representing
scattering from the i th Bragg edge. The scattering cosine is then obtained from the relationship

� = 1 � 2EBi =E: (2.123)

Using next-event estimators such as point detectors withS(�; � ), scattering cannot be done exactly because
of the discrete scattering angles. The MCNP code uses an approximate scheme [73, 74] that in the next-event
estimation calculation replaces discrete lines with histograms of width�� < 0:1.

See also Ÿ2.5.6.4.7.

2.4.3.7 Probability Tables for the Unresolved Resonance Range

Within the unresolved resonance range (e.g., in ENDF/B-VI, 2.25�25 keV for 235U, 10�149.03 keV for 238U,
and 2.5�30 keV for 239Pu), continuous-energy neutron cross sections appear to be smooth functions of energy.
This behavior occurs not because of the absence of resonances, but rather because the resonances are so
close together that they are unresolved. Furthermore, the smoothly varying cross sections do not account
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for resonance self-shielding e�ects, which may be signi�cant for systems whose spectra peak in or near the
unresolved resonance range.

Fortunately, the resonance self-shielding e�ects can be represented accurately in terms of probabilities based
on a strati�ed sampling technique. This technique produces tables of probabilities for the cross sections in
the unresolved resonance range. Sampling the cross section in a random walk from these probability tables is
a valid physics approximation so long as the average energy loss in a single collision is much greater than the
average width of a resonance; that is, if the narrow resonance approximation [75] is valid. Then the detail in
the resonance structure following a collision is statistically independent of the magnitude of the cross sections
prior to the collision.

The utilization of probability tables is not a new idea in Monte Carlo applications. A code [76] to calculate
such tables for Monte Carlo fast reactor applications was utilized in the early 1970s. Temperature-di�erence
Monte Carlo calculations [77] and a summary of the VIM Monte Carlo code [78] that uses probability tables
are pertinent early examples. Versions of the MCNP code up through and including 4B did not take full
advantage of the unresolved resonance data provided by evaluators. Instead, smoothly varying average cross
sections were used in the unresolved range. As a result, any neutron self-shielding e�ects in this energy range
were unaccounted for. Better utilizations of unresolved data have been known and demonstrated for some
time, and the probability table treatment has been incorporated [79] into MCNP4C and its successors. The
column �UR� in [ 45] lists whether unresolved resonance probability table data is available for each nuclide
library.

Sampling cross sections from probability tables is straightforward. At each of a number of incident energies
there is a table of cumulative probabilities (typically 20) and the value of the near-total, elastic, �ssion, and
radiative capture cross sections and heat deposition numbers corresponding to those probabilities. These
data supplement the usual continuous data; if probability tables are turned o� ( PHYS:n card), then the usual
smooth cross section is used. But if the probability tables are turned on (default), if they exist for the nuclide
of a collision, and if the energy of the collision is in the unresolved resonance energy range of the probability
tables, then the cross sections are sampled from the tables. The near-total is the total of the elastic, �ssion,
and radiative capture cross sections; it is not the total cross section, which may include other absorption or
inelastic scatter in addition to the near-total. The radiative capture cross section is not the same as the usual
MCNP capture cross section, which is more properly called �destruction� or absorption and includes not
only radiative capture but all other reactions not emitting a neutron. Sometimes the probability tables are
provided as factors (multipliers of the average or underlying smooth cross section) which adds computational
complexity but now includes any structure in the underlying smooth cross section.

It is essential to maintain correlations in the random walk when using probability tables to properly model
resonance self-shielding. Suppose we sample the 17th level (probability) from the table for a given collision.
This position in the probability table must be maintained for the neutron trajectory until the next collision,
regardless of particle splitting for variance reduction or surface crossings into various other materials whose
nuclides may or may not have probability table data. Correlation must also be retained in the unresolved
energy range when two or more cross-section sets for an isotope that utilize probability tables are at di�erent
temperatures.

The impact of the probability-table approach has been studied [80] and found to have negligible impact for
most fast and thermal systems. Small but signi�cant changes in reactivity may be observed for plutonium and
233U systems, depending upon the detailed shape of the spectrum. However, the probability-table method
can produce substantial increases in reactivity for systems that include large amounts of238U and have
high �uxes within the unresolved resonance region. Calculations for such systems will produce signi�cantly
nonconservative results unless the probability-table method is employed.

2.4.4 Photon Interactions

Sampling of a collision nuclide, analog capture, implicit capture, and many other aspects of photon interactions
such as variance reduction, are the same as for neutrons. The collision physics are completely di�erent.
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The MCNP code has two photon interaction models: simple and detailed.

The simple physics treatment ignores coherent (Thomson) scattering and �uorescent photons from photoelectric
absorption. It is intended for high-energy photon problems or problems where electrons are free and is also
important for next-event estimators such as point detectors, where scattering can be nearly straight ahead
with coherent scatter. The simple physics treatment uses implicit capture unless overridden with theCUT:p
card, in which case it uses analog capture.

The detailed physics treatment includes coherent (Thomson) scattering and accounts for �uorescent photons
after photoelectric absorption. Form factors and Compton pro�les are used to account for electron binding
e�ects. Analog capture is always used. The detailed physics treatment is used below energyEMCPFon the
PHYS:p card, and because the default value ofEMCPFis 100 MeV, that means it is almost always used by
default. It is the best treatment for most applications, particularly for high- Z nuclides or deep penetration
problems.

The generation of electrons from photons is handled three ways. These three ways are the same for both the
simple and detailed photon physics treatments.

1. If electron transport is turned on ( MODEP E), then all photon collisions except coherent scatter can
create electrons that are banked for later transport.

2. If electron transport is turned o� (no E on the MODEcard), then a thick-target bremsstrahlung model
(TTB) is used. This model generates electrons, but assumes that they are locally slowed to rest. Any
bremsstrahlung photons produced by the non-transported electrons are then banked for later transport.
Thus electron-induced photons are not neglected, but the expensive electron transport step is omitted.
The TTB production model contains many approximations compared to models used in actual electron
transport. In particular, the bremsstrahlung photons inherit the direction of the parent electron.

3. If IDES = 1 on the PHYS:p card, then all electron production is turned o�, no electron-induced photons
are created, and all electron energy is assumed to be locally deposited.

The TTB approximation is the default for MODE P problems. In MODE P E problems, it plays a role when
the energy cuto� for electrons is greater than that for photons. In this case, the TTB model is used in the
terminal processing of the electrons to account for the few low-energy bremsstrahlung photons that would be
produced at the end of the electrons' range.

2.4.4.1 Simple Physics Treatment

The simple physics treatment is intended primarily for higher energy photons. It is inadequate for high-Z
nuclides or deep penetration problems. The physical processes treated are photoelectric e�ect, pair production,
Compton scattering from free electrons, and (optionally) photonuclear interactions (described in Ÿ2.4.4.3).
The photoelectric e�ect is regarded as an absorption (without �uorescence). The kinematics of Compton
scattering is assumed to be with free electrons (without the use of form factors or Compton pro�les). The
total scattering cross section, however, includes the incoherent scattering factor regardless of the use of simple
or detailed physics. Thus, strict comparisons with codes using only the Klein-Nishina di�erential cross section
are not valid. Highly forward coherent Thomson scattering is ignored. Thus the total cross section� t is
regarded as the sum of three components:

� t = � pe + � pp + � s: (2.124)
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2.4.4.1.1 Photoelectric E�ect

This is treated as a pure absorption by implicit capture with a corresponding reduction in the photon weight
WGT, and hence does not result in the loss of a particle history except for Russian roulette played on the
weight cuto�. The non-captured weight WGT(1 � � pe=� s) is then forced to undergo either pair production or
Compton scattering. The captured weight either is assumed to be locally deposited or becomes a photoelectron
for electron transport or for the TTB approximation.

2.4.4.1.2 Pair Production

In a collision resulting in pair production [probability � pp =(� t � � pe)], either an electron-positron pair is
created for further transport (or the TTB treatment) and the photon disappears, or it is assumed that the
kinetic energy WGT(E � 1:022) MeV of the electron-positron pair produced is deposited as thermal energy
at the time and point of collision, with isotropic production of one photon of energy 0.511 MeV headed in
one direction and another photon of energy 0.511 MeV headed in the opposite direction. The rare single
1.022-MeV annihilation photon is ignored. The relatively unimportant triplet production process is also
ignored. The simple physics treatment for pair production is the same as the detailed physics treatment that
is described in Ÿ2.4.4.2.4.

2.4.4.1.3 Compton Scattering

The alternative to pair production is Compton scattering on a free electron, with probability � s=(� t � � pe).
In the event of such a collision, the objective is to determine the energyE 0 of the scattered photon, and
� = cos(� ) for the angle � of de�ection from the line of �ight. This yields at once the energy WGT(E � E 0)
deposited at the point of collision and the new direction of the scattered photon. The energy deposited at
the point of collision can then be used to make a Compton recoil electron for further transport or for the
TTB approximation. The di�erential cross section for the process is given by the Klein-Nishina formula [19]

K (�; � )d� = �r 2
o

�
� 0

�

� 2�
� 0

�
+

�
� 0 + � 2 � 1

�
d�; (2.125)

where r o is the classical electron radius2:817938� 10� 13 cm , � and � 0 are the incident and �nal photon
energies in units of 0.511 MeV [� = E=

�
mc2

�
, where m is the mass of the electron andc is the speed of

light], and � 0 = �= [1 + � (1 � � )].

The Compton scattering process is sampled exactly by Kahn's method [81] below 1.5 MeV and by Koblinger's
method [82] above 1.5 MeV as analyzed and recommended by Blomquist and Gelbard [83].

2.4.4.2 Detailed Physics Treatment

The detailed physics treatment includes coherent (Thomson) scattering and accounts for �uorescent photons
after photoelectric absorption. Again, photonuclear interactions may (optionally) be included [Ÿ2.4.4.3]. Form
factors are used with coherent and incoherent scattering to account for electron binding e�ects. Photo-neutron
reactions can also be included for select isotopes. Analog capture is always used, as described in Ÿ2.4.4.2.3.
The detailed physics treatment is used below energyEMCPFon the PHYS:p card, and because the default
value of EMCPFis 100 MeV, that means it is almost always used by default. It is the best treatment for most
applications, particularly for high- Z nuclides or deep penetration problems.

The detailed physics treatment for next-event estimators such as point detectors is inadvisable, as explained
in Ÿ2.4.4.2.5, unless theNOCOH= 1 option is used on the PHYS:p card to turn o� coherent scattering.
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Figure 2.5: Scattering factor modifying the Klein-Nishina cross section from [1].

2.4.4.2.1 Incoherent (Compton) Scattering

To model Compton scattering it is necessary to determine the angle� of scattering from the incident line of
�ight (and thus the new direction), the new energy E 0 of the photon, and the recoil kinetic energy of the
electron, E � E 0. The recoil kinetic energy can be deposited locally, can be transported inMODEP E problems,
or (default) can be treated with the TTB approximation.

Incoherent scattering is assumed to have the di�erential cross section

� I (Z; �; � )d� = I (Z; v)K (�; � )d�; (2.126)

where I (Z; v) is an appropriate scattering factor modifying the Klein-Nishina cross section in Eq. (2.112).

Qualitatively, the e�ect of I (Z; v) is to decrease the Klein-Nishina cross section (per electron) more extremely
in the forward direction, for low E and for high-Z independently. For any Z , I (Z; v) increases from
I (Z; 0) = 0 to I (Z; 1 ) = Z . The parameter v is the inverse length v = sin(�=2)=� = ��

p
1 � � , where

� = 10 � 8 moc=
�
h

p
2
�

= 29:1445cm� 1. The maximum value of v is vmax = k�
p

2 = 41:2166� at � = � 1.
The essential features ofI (Z; v) are indicated in Figure 2.5.

For hydrogen, an exact expression for the form factor is used [84], which is

I (1; v) = 1 �
1

�
1 + 1

2 f 2v2
� 4 ; (2.127)

where f is the inverse �ne structure constant, f = 137:0393, and f /
p

2 = 96:9014.

The Klein-Nishina formula is sampled exactly by Kahn's method [81] below 1.5 MeV and by Koblinger's
method [82] above 1.5 MeV as analyzed and recommended by Blomquist and Gelbard [83]. The outgoing
energy E 0 and angle� are rejected according to the form factors.
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For next-event estimators such as detectors and DXTRAN, the probability density for scattering toward the
detector point must be calculated as

p(� ) =
1

� 1(Z; � )
I (Z; v)K (�; � ) =

�r 2
o

� 1(Z; � )
I (Z; v)

�
� 0

�

� 2�
�
� 0 +

� 0

�
+ � 2 � 1

�
; (2.128)

where �r o = 0 :2494351and � 1(Z; � ) and I (Z; v) are looked up in the data library.

The new energy,E 0, of the photon accounts for the e�ects of a bound electron. The electron binding e�ect
on the scattered photon's energy distribution appears as a broadening of the energy spectrum due to the
pre-collision momentum of the electron. This e�ect on the energy distribution of the incoherently scattered
photon is called Doppler broadening.

The Hartree-Fock Compton pro�les, J (pz ), are used to account for the e�ects of a bound electron on the
energy distribution of the scattered photon. These Compton pro�les are a collection of orbital and total atom
data tabulated as a function of the projected pre-collision momentum of the electron. Values of the Compton
pro�les for the elements are published in tabular form by Biggs et al. [53] as a function ofpz .

The scattered energy of a Doppler broadened photon can be calculated by selecting an orbital shell, sampling
the projected momentum from the Compton pro�le, and calculating the scattered photon energy,E 0, from

pz = � f
E � E 0 � EE 0(1 � cos(� ))=mc2

p
E 2 + E 02 � 2EE 0cos(� )

: (2.129)

The Compton pro�les are related to the incoherent scattering function, I (Z; v), by

I (Z; v) =
X

k

pmax
z�

�1

Jk (pz ; Z )dpz ; (2.130)

where k refers to the particular electron subshell,Jk (pz ; Z ) is the Compton pro�le of the kth shell for a given
element, andpmax

z is the maximum momentum transferred and is calculated usingE 0 = E � Ebinding .

2.4.4.2.2 Coherent (Thomson) Scattering

Thomson scattering involves no energy loss, and thus is the only photon process that cannot produce electrons
for further transport and that cannot use the TTB approximation. Only the scattering angle � is computed,
and then the transport of the photon continues.

The di�erential cross section is � 2(Z; �; � )d� = C2(Z; v)T(� )d� , where C(Z; v) is a form factor modifying
the energy-independent Thomson cross sectionT(� ) = �r 2

o

�
1 + � 2

�
d� .

The general e�ect of C2(Z; v)=Z2 is to decrease the Thomson cross section more extremely for backward
scattering, for high E , and low Z . This e�ect is opposite in these respects to the e�ect ofI (Z; v)=Z on K (�; � )
in incoherent (Compton) scattering. For a given Z , C(Z; v) decreases fromC(Z; 0) = Z to C(Z; 1 ) = 0 . For
example, C(Z; v) is a rapidly decreasing function of� as � varies from +1 to � 1, and therefore the coherent
cross section is peaked in the forward direction. At high energies of the incoming photon, coherent scattering
is strongly forward and can be ignored. The parameterv is the inverse lengthv = sin(�=2)=� = ��

p
1 � � ,

where � = 10 � 8moc=
�
h

p
2
�

= 29:1445 cm� 1. The maximum value of v is vmax = ��
p

2 = 41:2166� at
� = � 1. The square of the maximum value isvmax = 1698:8038� 2. The qualitative features of C(Z; v) are
shown in Figure 2.6.

For next-event estimators, one must evaluate the probability density function

p(� ) = �r 2
o

�
1 + � 2�

C2(Z; v)=� 2(Z; � ) (2.131)
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Figure 2.6: Form factor modifying the energy-dependent Thomson cross section from [1].

for a given � . Here � 2(Z; � ) is the integrated coherent cross section. The value ofC(Z; v) at v = ��
p

1 � �
must be interpolated in the original C2(Z; v i ) tables separately stored on the cross-section library for this
purpose.

Note that at high energies, coherent scattering is virtually straight ahead with no energy loss; thus, it appears
from a transport viewpoint that no scattering took place. For a point detector to sample this scattering,
the point must lie on the original track ( � �= 1), which is seldom the case. Thus, photon point detector
variances generally will be much greater with detailed photon physics than with simple physics unless coherent
scattering is turned o� with NOCOH= 1 on the PHYS:p card, as explained in Ÿ2.4.4.2.5.

2.4.4.2.3 Photoelectric E�ect

The photoelectric e�ect consists of the absorption of the incident photon of energyE, with the consequent
emission of several �uorescent photons and the ejection (or excitation) of an orbital electron of binding energy
e < E , giving the electron a kinetic energy ofE � e. Zero, one, or two �uorescent photons are emitted. These
three cases are now described.

(1) Zero photons greater than 1 keV are emitted. In this event, the cascade of electrons that �lls up the
orbital vacancy left by the photoelectric ejection produces electrons and low-energy photons (Auger e�ect).
These particles can be followed inMODE P E problems, or be treated with the TTB approximation, or be
assumed to deposit energy locally. Because no photons are emitted by �uorescence (some may be produced
by electron transport or the TTB model), the photon track is terminated. This photoelectric �capture� of the
photon is scored like analog capture in the summary table of the output �le. Implicit capture is not possible.

(2) One �uorescent photon of energy greater than 1 keV is emitted. The photon energyE 0 is the di�erence in
incident photon energy E, less the ejected electron kinetic energyE � e, less a residual excitation energye0
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that is ultimately dissipated by further Auger processes. This dissipation leads to additional electrons or
photons of still lower energy. The ejected electron and any Auger electrons can be transported or treated
with the TTB approximation. In general,

E 0 = E � (E � e) � e0 = e � e0: (2.132)

These primary transactions are taken to have the full �uorescent yield from all possible upper levelse0, but
are apportioned among the x-ray linesK� 1, (L 3 ! K ); K� 2, (L 2 ! K ); K� 0

1, (meanM ! K ); and k� 0
2,

(meanN ! K ).

(3) Two �uorescence photons can occur if the residual excitatione0 of process (2) exceeds 1 keV. An electron
of binding energy e00can �ll the orbit of binding energy e0, emitting a second �uorescent photon of energy
E 00= e0� e00. As before, the residual excitatione00is dissipated by further Auger events and electron production
that can be modeled with electron transport in MODEP E calculations, approximated with the TTB model, or
assumed to deposit all energy locally. These secondary transitions come from all upper shells and go to L
shells. Thus the primary transitions must be K� 1 or K� 2 to leave an L shell vacancy.

Each �uorescent photon born as discussed above is assumed to be emitted isotropically and can be transported,
provided that E 0; E 00> 1 keV. The binding energiese, e0, and e00are very nearly the x-ray absorption edges
because the x-ray absorption cross section takes an abrupt jump as it becomes energetically possible to eject
(or excite) the electron of energyE �= e00, then e0, then e, etc. The jump can be as much as a factor of 20 (for
example, K-carbon).

A photoelectric event is terminal for elementsZ < 12 because the possible �uorescence energy is below 1 keV.
The event is only a single �uorescence of energy above 1 keV for31 > Z � 12, but double �uorescence (each
above 1 keV) is possible forZ � 31. For Z � 31, primary lines K� 1, K� 2, and K� 0

1 are possible and, in
addition, for Z � 37, the K� 0

2 line is possible.

In all photoelectric cases where the photon track is terminated because either no �uorescent photons are
emitted or the ones emitted are below the energy cuto�, the termination is considered to be caused by analog
capture in the output �le summary table (and not energy cuto�).

2.4.4.2.4 Pair Production

This process is considered only in the �eld of a nucleus. The threshold is2mc2[1 + ( m=M )] �= 1:022 MeV,
where M is the nuclear mass andm is the mass of the electron. There are three cases:

1. In the case of electron transport (MODEP E), the electron and positron are created and banked and the
photon track terminates.

2. For MODEP problems with the TTB approximation, both an electron and positron are produced but not
transported. Both particles can make TTB approximation photons. The positron is then considered to
be annihilated locally and a photon pair is created as in case (3).

3. For MODEP problems when positrons are not created by the TTB approximation, the incident photon of
energy E vanishes. The kinetic energy of the created positron/electron pair, assumed to beE � 2mc2,
is deposited locally at the collision point. The positron is considered to be annihilated with an electron
at the point of collision, resulting in a pair of photons, each with the incoming photon weight, and each
with an energy of mc2 = 0 :511 MeV. The �rst photon is emitted isotropically, and the second is emitted
in the opposite direction. The very rare single-annihilation photon of 1.022 MeV is ignored.
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2.4.4.2.5 Caution for Detectors and Coherent Scattering

The use of the detailed photon physics treatment is not recommended for photon next-event estimators
(such as point detectors and ring detectors) nor for DXTRAN, unless coherent scatter is turned o� with
the NOCOH= 1 option on the PHYS:p card. Alternatively, the simple physics treatment (EMCPF< 0:001 on the
PHYS:p card) can be used. Turning o� coherent scattering can improve the �gure of merit (FOM) [Ÿ2.6.5] by
more than a factor of 10 for tallies with small relative errors because coherent scattering is highly peaked in
the forward direction. Consequently, coherent scattering becomes undersampled because the photon must
be traveling directly at the detector point and undergo a coherent scattering event. When the photon is
traveling nearly in the direction of the point detector or the chosen point on a ring detector or DXTRAN
sphere, the PSC term,p(� ), of the point detector [Ÿ2.5.6.1] becomes very large, causing a huge score for the
event and severely a�ecting the tally. Remember that p(� ) is not a probability (that can be no larger than
unity); it is a probability density function (the derivative of the probability) and can approach in�nity for
highly forward-peaked scattering. Thus the under-sampled coherent scattering event is characterized by many
low scores to the detector when the photon trajectory is away from the detector (p(� ) = small) and a very
few, very large scores (p(� ) = huge) when the trajectory is nearly aimed at the detector. Such under-sampled
events cause a sudden increase in both the tally and the variance, a sudden drop in the FOM, and a failure
to pass the statistical checks for the tally as described in Ÿ2.6.9.2.3.

2.4.4.3 Photonuclear Physics Treatment

Photonuclear physics may be included when handling a photon collision. A photonuclear interaction begins
with the absorption of a photon by a nucleus. There are several mechanisms by which this can occur. The
nuclear data �les currently available focus on the energy range up to 150 MeV incident photon energy. The
value of 150 MeV was chosen as this energy is just below the threshold for the production of pions and the
subsequent need for much more complicated nuclear modeling. Below 150 MeV, the primary mechanisms for
photoabsorption are the excitation of either the giant dipole resonance or a quasi-deuteron nucleon pair.

The giant dipole resonance (GDR) absorption mechanism can be conceptualized as the electromagnetic
wave, the photon, interacting with the dipole moment of the nucleus as a whole. This results in a collective
excitation of the nucleus. It is the most likely process (that is, the largest cross section) by which photons
interact with the nucleus. Expected peak cross sections of 6�10 millibarns are seen for the light isotopes and
600�800 millibarns are not uncommon for the heavy elements. Thus, photonuclear collisions may account for
a theoretical maximum of 5�6% of the photon collisions. The GDR occurs with highest probability when the
wavelength of the photon is comparable to the size of the nucleus. This typically occurs for photon energies
in the range of 5�20 MeV and has a resonance width of a few MeV. For deformed nuclei, a double peak is
seen due to the variation of the nuclear radius. Outside of this resonance region, the cross section for a GDR
reaction becomes negligible. A complete description of this process can be found in the text by Bohr and
Mottelson [85].

The quasi-deuteron (QD) absorption mechanism can be conceptualized as the electromagnetic wave interacting
with the dipole moment of a correlated neutron-proton pair. In this case, the neutron-proton pair can be
thought of as a QD having a dipole moment with which the photon can interact. This mechanism is not as
intense as the GDR but it provides a signi�cant background cross section for all incident photon energies
above the relevant particle separation threshold. The seminal work describing this process was published by
Levinger [86, 87]. Recent e�orts to model this process include the work of Chadwick et al. [88].

Once the photon has been absorbed by the nucleus, one or more secondary particle emissions can occur. For
the energy range in question (that is, below 150 MeV) these reactions may produce a combination of gamma
rays, neutrons, protons, deuterons, tritons, helium-3 particles, alphas, and �ssion fragments. The threshold
for the production of a given secondary particle is governed by the separation energy of that particle, typically
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a few MeV to as much as a few 10s of MeV. Most of the these particles are emitted via pre-equilibrium and
equilibrium mechanisms though it is possible, but rare, to have a direct emission.

Pre-equilibrium emission can be conceptualized as a particle within the nucleus that receives a large amount
of energy from the absorption mechanism and escapes the binding force of the nucleus after at least one but
very few interactions with other nuclei. This is in contrast to a direct emission where the emission particle
escapes the nucleus without any interactions. Typically this occurs from QD absorption of the photon where
the incident energy is initially split between the neutron-proton pair. Particles emitted by this process tend
to be characterized by higher emission energies and forward-peaked angular distributions.

Equilibrium emission can be conceptualized as particle evaporation. This process typically occurs after the
available energy has been generally distributed among the nucleons. In the classical sense, particles boil
out of the nucleus as they penetrate the nuclear potential barrier. The barrier may contain contributions
from coulomb potential (for charged particles) and e�ects of angular momentum conservation. It should
be noted that for heavy elements, evaporation neutrons are emitted preferentially as they are not subject
to the coulomb barrier. Particles emitted by this process tend to be characterized by isotropic angular
emission and evaporation energy spectra. Several references are available on the general emission process
after photoabsorption [89�91].

For all of the emission reactions discussed thus far, the nucleus will most probably be left in an excited state.
It will subsequently relax to the ground state by the emission of one or more gamma rays. The gamma-ray
energies follow the well known patterns for relaxation. The only reactions that do not produce gamma-rays
are direct reactions where the photon is absorbed and all available energy is transferred to a single emission
particle leaving the nucleus in the ground state.

Reactions at higher energies (above the pion production threshold) require more thorough descriptions of the
underlying nuclear physics. The delta resonance and other absorption mechanisms become signi�cant and the
amount of energy involved in the reaction presents the opportunity for the production of more fundamental
particles. While beyond the scope of this current work, descriptions of the relevant physics may be found in
the paper by Fasso et al. [92].

New photonuclear data tables are used to extend the traditional photon collision routines. Because of the
sparsity of photonuclear data, the user is allowed to toggle photonuclear physics on or o� (with the fourth
entry on the PHYS:p card) and the code defaults to o�. Once turned on, the total photon cross section,
photoatomic plus photonuclear (i.e. the photonuclear cross section is absent from this calculation when
photonuclear physics is o�), is used to determine the distance to the next photon collision. For simple
physics, this implies the sum of the photoelectric, pair production, incoherent and photonuclear cross sections.
Detailed physics includes the additional coherent cross section in this sum.

The toggle for turning on and o� photonuclear physics is also used to select biased or unbiased photonuclear
collisions. For the unbiased option, the type of collision is sampled as either photonuclear or photoatomic
based on the ratio of the partial cross sections. The biased option is similar to forced collisions. At the
collision site, the particle is split into two parts, one forced to undergo photoatomic interaction and the
other photonuclear. The weight of each particle is adjusted by the ratio of their actual collision probability.
The photoatomic sampling routines (as described in Ÿ2.4.4.1 and Ÿ2.4.4.2) are used to sample the emission
characteristics for secondary electrons and photons from a photoatomic collision. The emission characteristics
for secondary particles from photonuclear collisions are handled independently.

Once it has been determined that a photon will undergo a photonuclear collision, the emission particles
are sampled as follows. First, the appropriate collision isotope is selected based on the ratio of the total
photonuclear cross section from each relevant table. Note that photoatomic collisions are sampled from a
set of elemental tables whereas photonuclear collisions are sampled from a set of isotopic tables. Next, the
code computes the ratio of the production cross section to the total cross section for each secondary particle
undergoing transport. Based on this ratio, an integer number of emission particles are sampled. If weight
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games (i.e. weight cuto�s or weight windows) are being used, these secondary particles are subjected to
splitting or roulette to ensure that the sampled particles will be of an appropriate weight. The emission
parameters for each secondary particle are then sampled independently from the reaction laws provided in
the data. Last, tallies and summary information are appropriately updated, applicable variance reduction
games are performed, and the emitted particle is banked for further transport.

Note that photonuclear physics was implemented in the traditional Monte Carlo style as a purely statistical
based process. This means that photons undergoing a photonuclear interaction produce an average number of
emission particles. For multiple particle emission, the particles may not be sampled from the same reaction;
for example, if two neutrons are sampled, one may be from the(
; 2n) distributions and the second from the
(
; np) distributions. Note that the photonuclear data use the same energy/angle distributions that have
been used for neutrons and the same internal coding for sampling. See Ÿ2.4.3.5.4. This generalized particle
production method is statistically correct for large sampling populations and lends itself to uncomplicated
biasing schemes. It is (obviously) not microscopically correct. It is not possible to perform microscopically
correct sampling given the current set of data tables.

Because of the low probability of a photon undergoing a photonuclear interaction, the use of biased photonuclear
collisions may be necessary. However, caution should be exercised when using this option as it can lead to
large variations in particle weights. It is important to check the summary tables to determine if appropriate
weight cuto� or weight windows have been set. That is, check to see if weight cuto�s or weight windows are
causing more particle creation and destruction than expected. It is almost always necessary to adjust the
default neutron weight cuto� (when using only weight cuto�s with photonuclear biasing) as it will roulette a
large fraction of the attempts to create secondary photoneutrons.

More information about the photonuclear physics included in the MCNP code can be found in White [93, 94].

2.4.5 Electron Interactions

The transport of electrons and other charged particles is fundamentally di�erent from that of neutrons and
photons. The interaction of neutral particles is characterized by relatively infrequent isolated collisions, with
simple free �ight between collisions. By contrast, the transport of electrons is dominated by the long-range
Coulomb force, resulting in large numbers of small interactions. As an example, a neutron in aluminum slowing
down from 0.5 MeV to 0.0625 MeV will have about 30 collisions, while a photon in the same circumstances
will experience fewer than ten. An electron accomplishing the same energy loss will undergo about 105
individual interactions. This great increase in computational complexity makes a single-collision Monte Carlo
approach to electron transport infeasible for most situations of practical interest.

Considerable theoretical work has been done to develop a variety of analytic and semi-analytic multiple-
scattering theories for the transport of charged particles. These theories attempt to use the fundamental cross
sections and the statistical nature of the transport process to predict probability distributions for signi�cant
quantities, such as energy loss and angular de�ection. The most important of these theories for the algorithms
in the MCNP code are the Goudsmit-Saunderson [95] theory for angular de�ections, the Landau [96] theory
of energy-loss �uctuations, and the Blunck-Leisegang [97] enhancements of the Landau theory. These theories
rely on a variety of approximations that restrict their applicability, so that they cannot solve the entire
transport problem. In particular, it is assumed that the energy loss is small compared to the kinetic energy
of the electron.

In order to follow an electron through a signi�cant energy loss, it is necessary to break the electron's
path into many steps. These steps are chosen to be long enough to encompass many collisions (so that
multiple-scattering theories are valid) but short enough that the mean energy loss in any one step is small (so
that the approximations necessary for the multiple-scattering theories are satis�ed). The energy loss and
angular de�ection of the electron during each of the steps can then be sampled from probability distributions
based on the appropriate multiple-scattering theories. This accumulation of the e�ects of many individual
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collisions into single steps that are sampled probabilistically constitutes the �condensed history� Monte Carlo
method.

The most in�uential reference for the condensed history method is the 1963 paper by Berger [98]. Based on
the techniques described in that work, Berger and Seltzer developed the ETRAN series of electron/photon
transport codes [99]. These codes have been maintained and enhanced for many years at the National Bureau
of Standards (now the National Institute of Standards and Technology). The ETRAN codes are also the basis
for the Integrated TIGER Series [100], a system of general-purpose, application-oriented electron/photon
transport codes developed and maintained by Halbleib and his collaborators at Sandia National Laboratories
in Albuquerque, New Mexico. The electron physics in the MCNP code is essentially that of the Integrated
TIGER Series, Version 3.0. The ITS radiative and collisional stopping power and bremsstrahlung production
models were integrated into MCNP4C.

2.4.5.1 Electron Steps and Substeps

The condensed random walk for electrons can be considered in terms of a sequence of sets of values

(0; E0; t0; u0; r 0); (s1; E1; t1; u1; r 1); (s2; E2; t2; u2; r 2); : : :

where sn , En , tn , un , and r n are the total path length, energy, time, direction, and position of the electron
at the end of n steps. On the average, the energy and path length are related by

En � 1 � En = �

sn�

sn � 1

dE
ds

ds; (2.133)

where � dE=ds is the total stopping power in energy per unit length. This quantity depends on energy and
on the material in which the electron is moving. ETRAN-based codes customarily choose the sequence of
path lengths f sn g such that

En

En � 1
= k; (2.134)

for a constant k. The most commonly used value isk = 2 � 1=8 , which results in an average energy loss per
step of 8.3%.

Electron steps with (energy-dependent) path lengthss = sn � sn � 1 determined by Eqs. (2.133)�(2.134)
are called major steps or energy steps. The condensed random walk for electrons is structured in terms
of these energy steps. For example, all pre-calculated and tabulated data for electrons are stored on an
energy grid whose consecutive energy values obey the ratio in Eq. (2.134). In addition, the Landau and
Blunck-Leisegang theories for energy straggling are applied once per energy step. See Ÿ2.4.5.6 for a more
detailed option. For a single step, the angular scattering could also be calculated with satisfactory accuracy,
since the Goudsmit-Saunderson theory is valid for arbitrary angular de�ections. However, the representation
of the electron's trajectory as the result of many small steps will be more accurate if the angular de�ections
are also required to be small. Therefore, the ETRAN codes and the MCNP code further break the electron
steps into smaller substeps. A major step of path lengths is divided into m substeps, each of path length
s=m. Angular de�ections and the production of secondary particles are sampled at the level of these substeps.
The integer m depends only on material (average atomic numberZ ). Appropriate values for m have been
determined empirically, and range fromm = 2 for Z < 6 to m = 15 for Z > 91.

In some circumstances, it may be desirable to increase the value ofm for a given material. In particular, a
very small material region may not accommodate enough substeps for an accurate simulation of the electron's
trajectory. In such cases, the user can increase the value ofm with the ESTEPoption on the material card M.
The user can gain some insight into the selection ofm by consulting PRINT Table 85 in the MCNP output.
Among other information, this table presents a quantity called DRANGE as a function of energy. DRANGE
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is the size of an energy step in g/cm2. Therefore, DRANGE/ m is the size of a substep in the same units, and
if � is the material density in g/cm 3, then DRANGE/ (m� ) is the length of a substep in centimeters. This
quantity can be compared with the smallest dimension of a material region. A reasonable rule of thumb is
that an electron should make at least ten substeps in any material of importance to the transport problem.

2.4.5.2 Condensed Random Walk

In the initiation phase of a transport calculation involving electrons, all relevant data are either precalculated
or read from the electron data �le and processed. These data include the electron energy grid, stopping powers,
electron ranges, energy step ranges, substep lengths, and probability distributions for angular de�ections and
the production of secondary particles. Although the energy grid and electron steps are selected according to
Eqs. (2.133)�(2.134), energy straggling, the analog production of bremsstrahlung, and the intervention of
geometric boundaries and the problem time cuto� will cause the electron's energy to depart from a simple
sequencesn satisfying Eq. (2.134). Therefore, the necessary parameters for sampling the random walk will be
interpolated from the points on the energy grid.

At the beginning of each major step, the collisional energy loss rate is sampled (unless the logic described in
Ÿ2.4.5.6 is being used). In the absence of energy straggling, this will be a simple average value based on the
nonradiative stopping power described in the next section. In general, however, �uctuations in the energy loss
rate will occur. The number of substepsm per energy step will have been preset, either from the empirically
determined default values, or by the user, based on geometric considerations. At mostm substeps will be
taken in the current major step with the current value for the energy loss rate. The number of substeps may
be reduced if the electron's energy falls below the boundary of the current major step, or if the electron
reaches a geometric boundary. In these circumstances, or upon the completion ofm substeps, a new major
step is begun, and the energy loss rate is resampled.

With the possible exception of the energy loss and straggling calculations, the detailed simulation of the
electron history takes place in the sampling of the substeps. The Goudsmit-Saunderson [95] theory is used to
sample from the distribution of angular de�ections, so that the direction of the electron can change at the end
of each substep. Based on the current energy loss rate and the substep length, the projected energy for the
electron at the end of the substep is calculated. Finally, appropriate probability distributions are sampled for
the production of secondary particles. These include electron-induced �uorescent X-rays, �knock-on� electrons
(from electron-impact ionization), and bremsstrahlung photons.

Note that the length of the substep ultimately derives from the total stopping power used in Eq. 2.133,
but the projected energy loss for the substep is based on the nonradiative stopping power. The reason for
this di�erence is that the sampling of bremsstrahlung photons is treated as an essentially analog process.
When a bremsstrahlung photon is generated during a substep, the photon energy is subtracted from the
projected electron energy at the end of the substep. Thus the radiative energy loss is explicitly taken into
account, in contrast to the collisional (nonradiative) energy loss, which is treated probabilistically and is not
correlated with the energetics of the substep. Two biasing techniques are available to modify the sampling of
bremsstrahlung photons for subsequent transport. However, these biasing methods do not alter the linkage
between the analog bremsstrahlung energy and the energetics of the substep.

The MCNP code uses identical physics for the transport of electrons and positrons, but distinguishes between
them for tallying purposes, and for terminal processing. Electron and positron tracks are subject to the
usual collection of terminal conditions, including escape (entering a region of zero importance), loss to time
cuto�, loss to a variety of variance-reduction processes, and loss to energy cuto�. The case of energy cuto�
requires special processing for positrons, which will annihilate at rest to produce two photons, each with
energy mc2 = 0 :511008MeV.
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2.4.5.3 Collisional Stopping Power

Berger [98] gives the restricted electron collisional stopping power, i.e., the energy loss per unit path length
to collisions resulting in fractional energy transfers� less than an arbitrary maximum value � m , in the form

�
�

dE
ds

�

� m

= NZC
�

ln
�

E 2(� + 2)
2I 2

�
+ f � (�; � m ) � �

�
; (2.135)

where

f � (�; � m ) = � 1 � � 2 +
�

�
� + 1

� 2 � 2
m

2
+

2� + 1

(� + 1) 2 ln(1 � � m ) + ln[4 � m (1 � � m )] +
1

1 � � m
: (2.136)

Here � and � m represent energy transfers as fractions of the electron kinetic energyE ; I is the mean ionization
potential in the same units asE ; � is v=c; � is the electron kinetic energy in units of the electron rest mass;�
is the density e�ect correction (related to the polarization of the medium); Z is the average atomic number
of the medium; N is the atom density of the medium in cm� 3; and the coe�cient C is given by

C =
2�e 4

mv2 (2.137)

where m, e, and v are the rest mass, charge, and speed of the electron, respectively. The density e�ect
correction � is calculated using the prescriptions of Sternheimer, Berger and Seltzer [101] when using data
from the el03 library and using the method of Sternheimer and Peierls [102] when using data from the el

library.

The ETRAN codes and the MCNP code do not make use of restricted stopping powers, but rather treat
all collisional events in an uncorrelated, probabilistic way. Thus, only the total energy loss to collisions is
needed, and Eqs. (2.135)�(2.136) can be evaluated for the special value� m = 1=2. The reason for the1=2 is
the indistinguishability of the two outgoing electrons. The electron with the larger energy is, by de�nition,
the primary. Therefore, only the range � < 1=2 is of interest. With � m = 1=2, Eq. (2.136) becomes

f � (�; � m ) = � � 2 + [1 � ln(2)] +
�

1
8

+ ln(2)
��

�
� + 1

� 2

: (2.138)

On the right side of Eq. (2.135), we can express bothE and I in units of the electron rest mass. ThenE can
be replaced by� on the right side of the equation. We also introduce supplementary constants

C2 = ln
�
2I 2�

; (2.139a)

C3 = 1 � ln(2) ; (2.139b)

C4 =
1
8

+ ln(2) ; (2.139c)

so that Eq. (2.135) becomes

�
�

dE
ds

�
= NZ 2 2�e 4

mv2

(

ln
�
� 2(� + 2)

�
� C2 + C3 � � 2 + C4

�
�

� + 1

� 2

� �

)

: (2.140)

This is the collisional energy loss rate in MeV/cm in a particular medium. In the MCNP code, we are actually
interested in the energy loss rate in units of MeV barns (so that di�erent cells containing the same material
need not have the same density). Therefore, we divide Eq. (2.140) byN and multiply by the conversion
factor 1024 barns/cm2. We also use the de�nition of the �ne structure constant

� =
2�e 2

hc
; (2.141)
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where h is Planck's constant, to eliminate the electronic chargee from Eq. (2.140). The result is as follows:

�
�

dE
ds

�
=

1024� 2h2c2

2�mc 2 Z

(

ln
�
� 2(� + 2)

�
� C2 + C3 � � 2 + C4

�
�

� + 1

� 2

� �

)
1

� 2 : (2.142)

This is the form actually used in the MCNP code to preset the collisional stopping powers at the energy
boundaries of the major energy steps.

The mean ionization potential and density e�ect correction depend upon the state of the material, either gas
or solid. In the �t of Sternheimer and Peierls [102] the physical state of the material also modi�es the density
e�ect calculation. In the Sternheimer, Berger and Seltzer [101] treatment, the calculation of the density e�ect
uses the conduction state of the material to determine the contribution of the outermost conduction electron
to the ionization potential. The occupation numbers and atomic binding energies used in the calculation are
from Carlson [103].

2.4.5.4 Radiative Stopping Power

The radiative stopping power is

�
dE
ds

�
�
�
�
rad

= 1024Z (Z + � )
�
�r 2

e

��
T + mc2�

� (n )
rad ; (2.143)

where � (n )
rad is the scaled electron-nucleus radiative energy-loss cross section based upon evaluations by Berger

and Seltzer for data from either the el or the el03 library (details of the numerical values of the data on
the el03 library can be found in [104� 106]); � is a parameter to account for the e�ect of electron-electron
bremsstrahlung (it is unity when using data from the el library and, when using data from the el03 library, it
is based upon the work of Seltzer and Berger [104� 106] and can be di�erent from unity); � is the �ne structure
constant; mc2 is the mass energy of an electron; andr e is the classical electron radius. The dimensions of the
radiative stopping power are the same as the collisional stopping power.

2.4.5.5 Energy Straggling

Because an energy step represents the cumulative e�ect of many individual random collisions, �uctuations in
the energy loss rate will occur. Thus the energy loss will not be a simple average� ; rather there will be a
probability distribution f (s; �) d� from which the energy loss� for the step of length s can be sampled.
Landau [96] studied this situation under the simplifying assumptions that the mean energy loss for a step
is small compared with the electron's energy, that the energy parameter� de�ned below is large compared
with the mean excitation energy of the medium, that the energy loss can be adequately computed from the
Rutherford [107] cross section, and that the formal upper limit of energy loss can be extended to in�nity.
With these simpli�cations, Landau found that the energy loss distribution can be expressed as

f (s; �)d� = � (� )d� (2.144)

in terms of � (� ), a universal function of a single scaled variable

� =
�
�

� ln
�

2�mv 2

(1 � � 2)I 2

�
+ � + � 2 � 1 + 
: (2.145)

Here m and v are the mass and speed of the electron,� is the density e�ect correction, � is v=c, I is the
mean excitation energy of the medium, and
 is Euler's constant (
 = 0 :5772157: : : ) . The parameter � is
de�ned by

� =
2�e 4NZ

mv2 s; (2.146)
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where e is the charge of the electron andNZ is the number density of atomic electrons, and the universal
function is

� (� ) =
1

2�i

x + i 1�

x � i 1

exp(� ln( � ) + �� )d�; (2.147)

where x is a positive real number specifying the line of integration.

For purposes of sampling,� (� ) is negligible for � < � 4, so that this range is ignored. Börsch-Supan [108]
originally tabulated � (� ) in the range � 4 � � � 100, and derived for the range� > 100 the asymptotic form

� (� ) �
1

w2 + � 2 ; (2.148)

in terms of the auxiliary variable w, where

� = w + ln( w) + 
 �
3
2

: (2.149)

Recent extensions [57] of Börsch-Supan's tabulation have provided a representation of the function in the
range � 4 � � � 100 in the form of �ve thousand equally probable bins in � . In the MCNP code, the
boundaries of these bins are saved in the arrayeqlm(mlam) , where mlam = 5001. Sampling from this tabular
distribution accounts for approximately 98.96% of the cumulative probability for � (� ). For the remaining
large-� tail of the distribution, the MCNP code uses the approximate form � (� ) � w, which is easier to
sample than (w2 + � 2) � 1, but is still quite accurate for � > 100.

Blunck and Leisegang [97] have extended Landau's result to include the second moment of the expansion of
the cross section. Their result can be expressed as a convolution of Landau's distribution with a Gaussian
distribution:

f � (s; �) =
1

p
2��

1�

�1

f (s; � 0) exp

"
(� � � 0)2

2� 2

#

d� 0: (2.150)

Blunck and Westphal [109] provided a simple form for the variance of the Gaussian:

� 2
BW = 10 eV � Z 4=3 � : (2.151)

Subsequently, Chechin and Ermilova [110] investigated the Landau/Blunck-Leisegang theory, and derived an
estimate for the relative error

� CE �

"
10�
I

�
1 +

�
10I

� 3
#� 1=2

; (2.152)

caused by the neglect of higher-order moments. Based on this work, Seltzer [111] describes and recommends
a correction to the Blunck-Westphal variance as

� =
� BW

1 + 3� CE
: (2.153)

This value for the variance of the Gaussian is used in the MCNP code.

Examination of the asymptotic form for � (� ) shows that unrestricted sampling of � will not result in a �nite
mean energy loss. Therefore, a material- and energy-dependent cuto�� c is imposed on the sampling of
� . In the initiation phase of an MCNP calculation, the code makes use of two preset arrays,flam(mlanc)

and avlm(mlanc) , with mlanc = 1591. The array flam contains candidate values for� c in the range
� 4 � � c � 50000; the array avlm contains the corresponding expected mean values for the sampling of� . For
each material and electron energy, the code uses the known mean collisional energy loss� , interpolating in
this tabular function to select a suitable value for � c, which is then stored in the dynamically allocated array
flc . During the transport phase of the calculation, the value of flc applicable to the current material and
electron energy is used as an upper limit, and any sampled value of� greater than the limit is rejected. In
this way, the correct mean energy loss is preserved.
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2.4.5.6 Logic for Sampling Energy Straggling

The Landau theory described in the previous section provides an energy-loss distribution determined by
the energyE of the electron, the path-length s to be traversed, and the properties of the material. Let us
symbolize a sampling of this distribution as an application of a straggling operatorL (E; s; �) that provides a
sampled value of the energy loss� . In the MCNP code earlier than version 5.1.40, all parameters needed
for sampling straggling were precomputed and associated with the standard energy boundariesEn and the
corresponding rangessn . In e�ect the code was restricted to calculations based on discrete arguments of the
operator L

�
En ; sn ; � n

�
. As a result, the proper assignment of an electron transport step to an energy group

n required a rather subtle logic. Eventually, two algorithms for apportioning straggled energy loss to electron
substeps were made available. With MCNP code version 5.1.40, a third algorithm is provided, as discussed in
Ÿ2.4.5.6.3.

2.4.5.6.1 Energy Indexing Algorithm in the MCNP Code

The �rst energy indexing algorithm (also called the �bin-centered� treatment) developed for the MCNP code
is arguably the less successful of the two existing algorithms, but for historical reasons remains the default
option. It was an attempt to keep the electron substeps aligned as closely as possible with the energy groups
that were used for their straggling samples. A simpli�ed description of the MCNP algorithm is as follows.
An electron of energyE is assigned to the groupn such that En > E � En +1 . A straggled energy loss� is
sampled from L

�
En ; sn ; � n

�
. The electron attempts to traverse m substeps, each of which is assigned the

energy loss� =m. If m substeps are completed, the process starts over with the assignment of a new energy
group. However, if the electron crosses a cell boundary, or if the electron energy falls below the current group,
the loop over m is abandoned, even if fewer thanm substeps have been completed, and the energy group is
reassigned.

Since the straggling parameters are pre-computed at the midpoints of the energy groups, this algorithm
does succeed in assigning to each substep a straggled energy loss based on parameters that are as close as
possible to the beginning energy of the substep. However, there are two problems with the current MCNP
approach. First, there is a high probability that the electron will not actually complete the expected range
sn for which the energy loss was sampled, in which case the energy loss relies on a linear interpolation in a
theory that is clearly nonlinear. Second, the �nal substep of each sequence using the sampled energy loss
from L

�
En ; sn ; � n

�
will frequently fall partially in the next-lower energy group n + 1 , but no substep using

the sample from L
�
En ; sn ; � n

�
will ever be partially in the higher group n� 1.

o Caution

This results in a small, but potentially signi�cant, systematic error.

See for example the investigations of Schaart et al. [112] and references therein.

2.4.5.6.2 Energy Indexing Algorithm in the ITS Code

Developed for the ITS codes earlier than the MCNP algorithm, this method (also called the �nearest-group-
boundary� treatment) was added to the MCNP code in order to explore some of the energy-dependent
artifacts of the condensed history approach, and in order to o�er more consistency with the TIGER Series
codes. This algorithm di�ers from the default treatment in two ways. First, the electron is initially assigned
to a group n such that

(En � 1 + En )=2 > E � (En + En +1 )=2: (2.154)
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In other words, the electron is assigned to the group whose upper limit is closest to the electron's energy.
Second, although the electron will be reassigned when it enters a new geometric cell, it will not be reassigned
merely for falling out of the current energy group. These di�erences serve to reduce the number of times
that unwanted imposition of linear interpolation on partial steps occurs, and to allow more equal numbers of
excursions above and below the energy group from which the Landau sampling was made. As [112] shows, these
advantages make the ITS algorithm a more accurate representation of the energy loss process, as indicated
in comparisons with reference calculations and experiments. Nevertheless, although the reliance on linear
interpolation and the systematic errors are reduced, neither is completely eliminated. It is straightforward to
create example calculations that show unphysical artifacts in the ITS algorithm as well as in the MCNP logic.

The �nearest-group-boundary� treatment is selected by setting the 18th entry of the DBCN card to 1. For
example, the card �DBCN 17J 1 � selects this straggling logic without a�ecting any of the other DBCN options.

2.4.5.6.3 New Energy- and Step-speci�c Method

It is easy to express what we would like to see in the straggling logic. For an electron with energyE about to
traverse a step of lengths, we would like to sample the straggling from the operatorL

�
E; s; �

�
without regard

to the prearranged energy boundariesEn . In the MCNP code, version 5.1.40, we have now brought this
situation about. A new Fortran 90 module has been installed to deal with straggling data. Those parameters
that are separate from the individual straggling events are still precomputed, but each electron transport
step can now sample its energy loss separately from adjacent steps, and speci�cally for its current energy
and planned step length. Using this approach, we largely eliminate the linear interpolations and energy
misalignments of the earlier algorithms and obviate the need for a choice of energy group. As of the MCNP
code, version 5.1.40, the new straggling logic is included in the code, but is still being tested. Preliminary
results [113] indicate that a more accurate and stable estimate of the straggling is obtained, and a variety of
unphysical artifacts are eliminated.

The new logic is selected by setting the 18th entry of theDBCNcard to 2, for example with the card � DBCN17J 2 �.

2.4.5.7 Angular De�ections

The ETRAN codes and the MCNP code rely on the Goudsmit-Saunderson [95] theory for the probability
distribution of angular de�ections. The angular de�ection of the electron is sampled once per substep
according to the distribution

F (s; � ) =
1X

l =0

�
l +

1
2

�
exp(� sGl )Pl (� ); (2.155)

where s is the length of the substep,� = cos(� ) is the angular de�ection from the direction at the beginning
of the substep,Pl (� ) is the l th Legendre polynomial, andGl is

Gl = 2 �N

1�

� 1

d�
d


[1 � Pl (� )]d�; (2.156)

in terms of the microscopic cross sectiond�= d
 , and the atom density N of the medium.

For electrons with energies below 0.256 MeV, the microscopic cross section is taken from numerical tabulations
developed from the work of Riley [114]. For higher-energy electrons, the microscopic cross section is
approximated as a combination of the Mott [115] and Rutherford [107] cross sections, with a screening
correction. Seltzer [99] presents this �factored cross section� in the form

d�
d


=
Z 2e2

p2v2(1 � � + 2 � )2

�
(d�= d
) Mott

(d�= d
) Rutherford

�
; (2.157)
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where e, p, and v are the charge, momentum, and speed of the electron, respectively. The screening correction
� was originally given by Molière [116] as

� =
1
4

�
�mc

0:885p

� 2

Z 2=3

"

1:13 + 3:76
�

�Z
�

� 2
#

; (2.158)

where � is the �ne structure constant, m is the rest mass of the electron, and� = v=c. The MCNP code now
follows the recommendation of Seltzer [99], and the implementation in the Integrated TIGER Series, by using
the slightly modi�ed form

� =
1
4

�
�mc

0:885p

� 2

Z 2=3

"

1:13 + 3:76
�

�Z
�

� 2r
�

� + 1

#

; (2.159)

where � is the electron energy in units of electron rest mass. The multiplicative factor in the �nal term is an
empirical correction which improves the agreement at low energies between the factored cross section and the
more accurate partial-wave cross sections of Riley.

2.4.5.8 Bremsstrahlung

When using data from the el library, for the sampling of bremsstrahlung photons, the MCNP code relies
primarily on the Bethe-Heitler [ 117] Born-approximation results that have been used until rather recently
[104] in ETRAN. A comprehensive review of bremsstrahlung formulas and approximations relevant to the
present level of the theory in the MCNP code can be found in the paper of Koch and Motz [118]. Particular
prescriptions appropriate to Monte Carlo calculations have been developed by Berger and Seltzer [119]. For
the ETRAN-based codes, this body of data has been converted to tables including bremsstrahlung production
probabilities, photon energy distributions, and photon angular distributions.

For data tables on the el03 library, the production cross section for bremsstrahlung photons and energy
spectra are from the evaluation by Seltzer and Berger [104� 106]. The evaluation uses detailed calculations
of the electron-nucleus bremsstrahlung cross section for electrons with energies below 2 MeV and above
50 MeV. The evaluation below 2 MeV uses the results of Pratt, Tseng, and collaborators, based on numerical
phase-shift calculations [120� 123]. For 50 MeV and above, the analytical theory of Davies, Bethe, Maximom,
and Olsen [124, 125] is used and is supplemented by the Elwert-Coulomb [126] correction factor and the
theory of the high-frequency limit or tip region given by Jabbur and Pratt [ 127, 128]. Screening e�ects
are accounted for by the use of Hartree-Fock atomic form factors [1, 129]. The values between these �rmly
grounded theoretical limits are found by a cubic-spline interpolation as described in [104, 105]. Seltzer reports
good agreement between interpolated values and those calculated by Tseng and Pratt [130] for 5- and 10-MeV
electrons in aluminum and uranium. Electron-electron bremsstrahlung is also included in the cross-section
evaluation based on the theory of Haug [131] with screening corrections derived from Hartree-Fock incoherent
scattering factors [1, 129]. The energy spectra for the bremsstrahlung photons are provided in the evaluation.
No major changes were made to the tabular angular distributions, which are internally calculated when using
the el library, except to make �ner energy bins over which the distribution is calculated.

The MCNP code addresses the sampling of bremsstrahlung photons at each electron substep. The tables of
production probabilities are used to determine whether a bremsstrahlung photon will be created. For data
from the el03 library, the bremsstrahlung production is sampled according to a Poisson distribution along
the step so that none, one or more photons could be produced; theel library allows for either none or one
bremsstrahlung photon in a substep. If a photon is produced, the new photon energy is sampled from the
energy distribution tables. By default, the angular de�ection of the photon from the direction of the electron
is also sampled from the tabular data. The direction of the electron is una�ected by the generation of the
photon because the angular de�ection of the electron is controlled by the multiple scattering theory. However,
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the energy of the electron at the end of the substep is reduced by the energy of the sampled photon because
the treatment of electron energy loss, with or without straggling, is based only on non-radiative processes.

There is an alternative to the use of tabular data for the angular distribution of bremsstrahlung photons. If
the fourth entry on the PHYS:e card is 1, then the simple, material-independent probability distribution

p(� )d� =
1 � � 2

2(1 � �� )2 d�; (2.160)

where � = cos(� ) and � = v=c, will be used to sample for the angle of the photon relative to the direction of
the electron according to the formula

� =
2� � 1 � �

2�� � 1 � �
; (2.161)

where x is a random number drawn from the unit interval. This sampling method is of interest only in the
context of detectors and DXTRAN spheres. A set of source contribution probabilitiesp(� ) consistent with
the tabular data is not available. Therefore, detector and DXTRAN source contributions are made using
Eq. (2.160). Specifying that the generation of bremsstrahlung photons rely on Eq. (2.160) allows the user to
force the actual transport to be consistent with the source contributions to detectors and DXTRAN.

2.4.5.9 K-shell Electron Impact Ionization and Auger Transitions

Data tables in the el03 library use the same K-shell impact ionization calculation (based upon ITS1.0) as
data tables on the el library, except for how the emission of relaxation photons is treated; theel03 evaluation
model has been modi�ed to be consistent with the photo-ionization relaxation model. In theel evaluation, a
K-shell impact ionization event generated a photon with the average K-shell energy. Theel03 evaluation
generates photons with energies given by Everett and Cashwell [51]. Both el03 and el treatments only take
into account the highest Z component of a material. Thus inclusion of trace highZ impurities could mask
K-shell impact ionization from other dominant components.

Auger transitions are handled the same for data tables from theel03 and el libraries. If an atom has
undergone an ionizing transition and can undergo a relaxation, if it does not emit a photon it will emit an
Auger electron. The di�erence betweenel and el03 is the energy with which an Auger electron is emitted,
given by EA = EK or EA = EK � 2EL for el or el03 , respectively. The el value is that of the highest energy
Auger electron while the el03 value is the energy of the most probable Auger electron. It should be noted
that both models are somewhat crude.

2.4.5.10 Knock-on Electrons

The Møller cross section [132] for scattering of an electron by an electron is

d�
d�

=
C
E

(
1
� 2 +

1

(1 � � )2 +
�

�
� + 1

� 2

�
2� + 1

(� + 1) 2

1
� (1 � � )

)

; (2.162)

where � , � , E , and C have the same meanings as in Eqs. (2.135)�(2.138). When calculating stopping powers,
one is interested in all possible energy transfers. However, for the sampling of transportable secondary
particles, one wants the probability of energy transfers greater than some� c representing an energy cuto�,
below which secondary particles will not be followed. This probability can be written

� (� c) =

1=2�

� c

d�
d�

d�: (2.163)
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The reason for the upper limit of 1=2 is the same as in the discussion of Eq. (2.138). Explicit integration of
Eq. (2.162) leads to

� (� c) =
C
E

(
1
� c

+
1

1 � � c
+

�
�

� + 1

� 2�
1
2

� � c

�
�

2� + 1

(� + 1) 2 ln
�

1 � � c

� c

� )

: (2.164)

Then the normalized probability distribution for the generation of secondary electrons with � > � c is given by

g(�; � c)d� =
1

� (� c)
d�
d�

d�: (2.165)

At each electron substep, the MCNP code uses� (� c) to determine randomly whether knock-on electrons will
be generated. If so, the distribution of Eq. (2.165) is used to sample the energy of each secondary electron.
Once an energy has been sampled, the angle between the primary direction and the direction of the newly
generated secondary particle is determined by momentum conservation. This angular de�ection is used for
the subsequent transport of the secondary electron. However, neither the energy nor the direction of the
primary electron is altered by the sampling of the secondary particle. On the average, both the energy loss
and the angular de�ection of the primary electron have been taken into account by the multiple scattering
theories.

2.4.5.11 Multigroup Boltzmann-Fokker-Planck Electron Transport

The electron physics described above can be implemented into a multigroup form using a hybrid multigroup
and continuous-energy method for solving the Boltzmann-Fokker-Planck equation as described by Morel [60].
The multigroup formalism for performing charged particle transport was pioneered by Morel and Lorence
[61� 63] for use in deterministic transport codes. With a �rst-order treatment for the continuous slowing down
approximation (CSDA) operator, this formalism is equally applicable to a standard Monte Carlo multigroup
transport code as discussed by Sloan [133]. Unfortunately, a �rst-order treatment is not adequate for many
applications. Morel, et al. have addressed this di�culty by developing a hybrid multigroup/continuous energy
algorithm for charged particles that retains the standard multigroup treatment for large-angle scattering,
but treats exactly the CSDA operator. As with standard multigroup algorithms, adjoint calculations are
performed readily with the hybrid scheme.

The process for performing an MCNP/MGBFP calculation for electron/photon transport problems involves
executing three codes. First the CEPXS [61� 63] code is used to generate coupled electron-photon multigroup
cross sections. Next the CRSRD code casts these cross sections into a form suitable for use in the MCNP
code by adjusting the discrete ordinate moments into a Radau quadrature form that can be used by a Monte
Carlo code. CRSRD also generates a set of multigroup response functions for dose or charge deposition
that can be used for response estimates for a forward calculation or for sources in an adjoint calculation.
Finally, the MCNP code is executed using these adjusted multigroup cross sections. Some applications of this
capability for electron/photon transport have been presented in [134].

2.5 Tallies

The MCNP code automatically creates standard summary information that gives the user a better insight into
the physics of the problem and the adequacy of the Monte Carlo simulation including: a complete accounting
of the creation and loss of all tracks and their energy; the number of tracks entering and reentering a cell plus
the track population in the cell; the number of collisions in a cell; the average weight, mean free path, and
energy of tracks in a cell; the activity of each nuclide in a cell (that is, how particles interacted with each
nuclide, not the radioactivity); and a complete weight balance for each cell.
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Table 2.2: Tally Quantities Scored.

Tally Description Score Physical Quantity Units

F1 surface current W J =
�

dE
�

dt
�

dA
�

d
 j
 � nj (r ; 
 ; E; t ) particles

F2 surface �ux W
j� jA � S = 1

A

�
dE

�
dt

�
dA

�
d
  (r ; 
 ; E; t ) particles/cm 2

F4 cell �ux W T l
V � V = 1

V

�
dE

�
dt

�
dV

�
d
  (r ; 
 ; E; t ) particles/cm 2

F5 detector �ux W �p( 
 P ) exp( � � )
L 2 � P =

�
dE

�
dt

�
d
  (r P ; 
 ; E; t ) particles/cm 2

F6 energy deposition WTl � t (E )H (E) � a
m H t = � a

m

�
dE

�
dt

�
dV

�
d
 � t (E )H (E) (r ; 
 ; E; t ) MeV/g

F7 �ssion-energy deposition WTl � f (E )Q � a
m H f = � a

m Q
�

dE
�

dt
�

dV
�

d
 � f (E ) (r ; 
 ; E; t ) MeV/g

F8 pulse-height tally WC put in bin ED pulses pulses

The MCNP code also provides seven standard tally types that can be speci�ed in an MCNP input �le by
using F cards (see Ÿ5.9 for the tally type speci�cation). These tallies are normalized to be per source particle
unless a di�erent normalization has been speci�ed with the WGTkeyword on the SDEF card, changed by the
user with a TALLYX subroutine, and by weight in a criticality ( KCODE) calculation. The MCNP tally plotter
provides graphical displays of the results (see Ÿ6.3). The seven standard tally quantities actually scored in
the MCNP code before the �nal normalization are presented in Table 2.2. The table also gives the physical
quantity that corresponds to each tally, and it de�nes much of the notation used in the remainder of this
section. For Table 2.2, the variables used are

W particle weight,

WC collective weight from a history for pulse-height tally [Ÿ2.5.5],

r ; 
 ; E; t particle position vector (cm), direction unit vector, energy (MeV), and time (shakes, sh; 1sh =
10� 8 s),

� 
 � n, cosine of angle between surface normaln and particle trajectory 
 ,

A; V surface area (cm2) and volume (cm3), calculated by the code or input by the user,

Tl track length (cm), event transit time multiplied by the particle velocity,

p(
 P ) probability density function for scattering (or starting) in the direction 
 P towards the point
detector (azimuthal symmetry is assumed),

� total number of mean free paths from particle location to detector (i.e., the optical distance),

L distance to detector from the source or collision event (cm),

� t (E ) microscopic total cross section (barns),

� f (E ) microscopic �ssion cross section (barns),

H (E) heating number (MeV/collision),

ED total energy deposited by a history in a detector (MeV); see [Ÿ2.5.5],

� a atom density (atoms/barn-cm),

� g mass density (g/cm3); not used in Table 2.2 but used later in this chapter,

m cell mass (g),

Q total prompt energy release per �ssion (MeV),
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Table 2.3: Tallies Modi�ed with an Asterisk or Plus.

Tally Scores Units

*F1 WE MeV

*F2 W E
j � jA MeV/cm 2

*F4 W T l E
V MeV/cm 2

*F5 W �p( 
 P ) exp( � � )E
L 2 MeV/cm 2

*F6 1:60219� 10� 22 jerks
MeV WTl � t (E )H (E) � a

m jerks/g

+F6 total energy deposition from all particles MeV/g

*F7 1:60219� 10� 22 jerks
MeV WTl � f (E )Q � a

m jerks/g

*F8 ED � WC put in bin ED MeV

+F8 � WC put in bin ED charge

 angular �ux as typically de�ned in nuclear reactor theory [ 75, 135];  (r ; 
 ; E; t ) = vn(r ; 
 ; E; t ),
where n is the particle density (particles/cm 3/MeV/steradian) and v is the velocity (cm/sh), so
the units of  are particles/cm2/sh/MeV/steradian,

J total (not net) current crossing a surface,

� S average �ux on a surface,

� V average �ux in a cell (i.e., in a volume),

� P �ux at a point,

r P point at which � P is estimated (i.e., the location of the point detector),

H t total energy deposition in a cell (MeV/g),

H f total �ssion energy deposition in a cell (MeV/g).

The units of each tally are derived from the units of the source. If the source has units of particles per unit
time, current tallies are particles per unit time and �ux tallies are particles per unit time per unit area. When
the source has units of particles, current tallies have units of particles and �ux tallies actually represent
�uences with units of particles per unit area. A steady-state �ux solution can be obtained by having a source
with units of particles per unit time and integrating the tally over all time (that is, omitting the T n card).
The average �ux in a time bin can be obtained from the �uence tally for a time-dependent source by dividing
the tally by the time bin width in shakes. These tallies can all be made per unit energy by dividing each
energy bin by the energy bin width.

Adding an asterisk (* F n) changes the units into an energy tally and multiplies each tally as indicated in
Table 2.3. For an F8 pulse height tally, the asterisk changes the tally from deposition of pulses to an energy
deposition tally. A plus sign can only be used with F6 and F8 cards. A + F6 tally is a total energy position
tally from all particles (2.5.3) and a + F8 tally is a charge deposition tally.

Extensive statistical analysis of tally convergence is applied to the tally �uctuation bin of each tally [Ÿ5.9.19].
Ten statistical checks are made, including the variance of the variance and the Pareto slope of the history
score probability density function. These checks are described in Ÿ2.6.

In addition to the standard tallies, the MCNP code has superimposed mesh tallies. This feature allows the
user to tally particles on a mesh independent of the problem geometry. Track-length quantities such as
�uence, heating, energy deposition, point-detector and DXTRAN sphere contribution rays or other data such
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n 


dA

vdt

vdtj
 � nj

dr = vdtj
 � njdA

Figure 2.7: Diagram for description of the surface current tally.

as source points can be calculated. Mesh tallies are invoked by using theFMESH and TMESH cards. When
a track-length quantity is computed over the mesh tally cells, it is typically normalized to be per starting
particle, except in KCODEcriticality calculations.

Not all features of the standard tallies have been implemented in the mesh tallies. For example, no tally
�uctuation statistics are given for mesh tallies; the only error information provided is the relative error for
each mesh cell. Features that can be used with the mesh tallies are multiplying the result by the particle
energy (* FMESHcard), dose functions, and tally multipliers. Time binning is not a feature of the TMESH tally.

The de�nitions of the current and �ux in the sections that follow come from nuclear reactor theory [ 75, 135]
but are related to similar quantities in radiative transfer theory [ 136, 137]. The MCNP angular �ux multiplied
by the particle energy is the same as the intensity in radiative transfer theory. The MCNP total �ux at
energy E multiplied by the particle energy E equals the integrated energy density times the speed of light in
radiative transfer theory. The MCNP current multiplied by the particle energy is analogous to the radiative
�ux crossing an area in radiative transfer theory. The MCNP particle �uence multiplied by the particle
energy is the same as the �uence in radiative transfer theory.

Nuclear reactor theory has given the terms �ux and current quite di�erent meanings [75, 135] than they have
in other branches of physics; terminology from other �elds should not be confused with that used in this
manual.

Rigorous mathematical derivations of the basic tallies are given in [138]. Somewhat heuristic derivations
follow. Note that the surface current is a total but the cell and surface �uxes are averages.

2.5.1 Surface Current Tally

The surface current (F1 ) tally is a simple count of the number of particles, represented by the Monte Carlo
weight, crossing a surface in speci�ed bins as illustrated in Figure 2.7. The number of particles at timet,
in a volume elementdr , with directions within d
 , and energies withindE is n(r ; 
 ; E; t )dr d
d E . Let the
volume elementdr contain the surface elementdA (with surface normal n) and along 
 for a distance vdt,
as depicted in Figure 2.7. Then the di�erential volume element isdr = vdtj
 � njdA. All the particles within
this volume element (with directions within d
 and energies withindE) will cross surfacedA in time dt.
Thus, the number of particles crossing surfacedA in time dt is j
 � njvn(r ; 
 ; E; t )d
d EdtdA. The number
of particles crossing surfaceA in energy bin i , time bin j , and angle bin k is thus

�

E i

dE
�

t j

dt
�


 k

d

�

dAj
 � njvn(r ; 
 ; E; t ): (2.166)

The range of integration over energy, time, and angle (cosine) is controlled byE , T , and C cards. If the
range of integration is over all angles (noC card), then the surface current tally is a count of the number of
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particles with any trajectory crossing the surface (in each energy and time bin) and thus has no direction
associated with it.

Note that the MCNP current J of Table 2.2 is the total current and not the net current. It is the total
number of particles crossing a surface. Frequently, the net current, rather than the total current, is desired.
De�ning the partial currents crossing in the positive and negative directions (�right� and �left� or �up� and
�down�) as [135]

J � =
�

dE
�

dt
�

dA
�


 � n > 0

 � n < 0

d
 j
 � nj (r ; 
 ; E; t ); (2.167)

where the net current across the surface isJnet = J+ � J � . The total current of Table 2.2 is Jnet = J+ + J � .
The partial currents J � across a surface can be calculated in the MCNP code using the surface current tally
with two cosine bins, one each for �1 � � < 0 and 0 < � � 1.

The units of the surface current tally are those of the source. If the source has units of particles per unit
time, the tally has units of particles per unit time. When the source has units of particles, the tally has units
of particles. The SD card can be used to input a constant that divides the tally. In other words, if x is input
on the SD card, the tally will be divided by x.

2.5.2 Flux Tallies

De�ning the scalar �ux as � (r ; E; t ) �
�

d
  (r ; 
 ; E; t ) where � (r ; E; t )dr dE is the total scalar �ux in
volume elementdr about r and energy elementdE about E and, introducing energy and time bins, the
integrals of Table 2.2 for the surface �ux ( F2 ), cell �ux ( F4 ), and detector �ux ( F5 ) tallies can be recast as

F2 =
1
A

�

E i

dE
�

t j

dt
�

dA � (r ; E; t ); (2.168a)

F4 =
1
V

�

E i

dE
�

t j

dt
�

dV � (r ; E; t ); (2.168b)

F5 =
�

E i

dE
�

t j

dt � (r P ; E; t ): (2.168c)

The range of integration over energy and time can be tailored byE and T cards. If no E card is present,
the integration limits are the same as the limits for the corresponding cross sections used. The cell �ux and
surface �ux tallies are discussed in this section. The detector �ux tally is discussed in Ÿ2.5.6.

2.5.2.1 Track-length Estimate of Cell Flux

The average particle �ux in a cell (from Table 2.2) can be written

� V =
1
V

�
dE

�
dt

�
dV

�
d
  (r ; 
 ; E; t )

=
1
V

�
dE

�
dV

�
d


�
dt vn(r ; 
 ; E; t )

=
1
V

�
dE

�
dV

�
dt vN (r ; E; t ); (2.169)
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Figure 2.8: Diagram for description of the surface �ux tally.

where N (r ; E; t ) =
�

d
 n(r ; 
 ; E; t ) is the density of particles, regardless of their trajectories, at a point.
De�ning ds to be the di�erential unit of track length and noting that ds = vdt yields

� V =
1
V

�
dE

�
dV

�
ds N (r ; E; t ): (2.170)

The quantity N (r ; E; t )ds may be thought of as a track-length density; thus, the average �ux can be estimated
by summing track lengths. The MCNP code estimates� V by summing WTl =V for all particle tracks in the
cell. Time- and energy-dependent subdivisions of� V are made by binning the track lengths in appropriate
time and energy bins. The track length estimator is generally quite reliable because there are frequently
many tracks in a cell (compared to the number of collisions), leading to many contributions to this tally.

The SD card can be used to input a new volume that divides the tally. In other words, if V 0 is input on the
SD card, the tally will be divided by V 0 instead of V . See theSD card information on how the MCNP code
can handle the volumes used to compute the tallies.

2.5.2.2 Surface Flux

The average particle scalar �ux on a surface (� S of Table 2.2) is estimated using a surface crossing estimator
that may be thought of as the limiting case of the cell �ux or track length estimator when the cell becomes
in�nitely thin, as illustrated in Figure 2.8.

As the cell thickness� approaches zero, the cell volume approachesA� and the track length through the cell
approaches�= j
 � nj. Thus,

� S = lim
� ! 0

� V

= lim
� ! 0

WTl

V

= lim
� ! 0

W�
A� j
 � nj

=
W

Aj� j
:

A more formal derivation of the surface �ux estimator may be found in [138].

For particles grazing the surface,1=j� j is very large and the MCNP code approximates the surface �ux
estimator in order to ensuring a �nite variance for the sampled population.

o Caution

An unmodi�ed surface �ux estimator has an in�nite variance when 1=j� j is very large, and thus
con�dence intervals could not be formed via the central limit theorem because the central limit theorem
requires a �nite variance. For this reason, the MCNP code sets� = 0 :0005when � < 0:001; because of
this approximation, the F2 surface �ux tally is not an exact estimate of the surface �ux. This value
can be adjusted with the 24th entry on the DBCN card.
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The SD card can be used to input a new area that divides the tally. In other words, ifA0 is input on the
SD card, the tally will be divided by A0 instead of A. See information in the SD card section on how the
MCNP code handles the areas used by the tallies.

The surface �ux tally is essential for stochastic calculation of surface areas when the normal analytic procedure
fails [Ÿ2.9.2].

2.5.3 Energy Deposition Tally

The energy-deposition family of tallies are used to estimate cell heating. TheF6 and TMESH cards can be
used to tally energy deposition; the F6 card is for a cell-based tally and the TMESHcard is for a mesh-based
tally. The F6 card provides the energy deposition for a single particle type in units of MeV/g per source
particle. The * F6 card is equivalent to the F6 card except in units of jerks/g per source particle (1 MeV =
1:60219� 10� 22 jerks). The + F6 card provides an estimate of the total energy deposition from all particles.
These tallies are implemented as hybrid track-length and collision tallies. The mass normalization of the
cell-based energy deposition tally can be adjusted by theSD card. Multiple particles can be listed as follows:
F6 :p;n.

These tallies operate slightly di�erently depending on the incident particle, the MODE card, and if model
physics are used. An overview is listed in Table 2.4. The heating numbers, which are the probability of a
reaction multiplied by all kinetic energy carried away by the secondary particles, are generated by NJOY [14].

o Caution

The use of heating numbers can result in negative energy deposition tallies in two cases. First, in the
case in which collision tallies are used to subtract energies of secondary particles, this can result in
negative + F6 tallies when the tally is undersampled. Second, older data may have poor separation
of neutron and photon heating resulting in one of the two having negative values. The total energy
deposition is still consistent in this second case.

o Caution

The way the MCNP code handles F6 tallies results in double counting in a variety of cases, such as
with a combination of photons and electrons, or with light ion recoil. As such, the sum of F6 tallies
should not be used, with the exception ofF6 :n+ F6 :p which are designed to be compatible. For total
energy deposition,+ F6 should be considered instead.

This hybrid tallying approach was designed to minimize the cost of computing energy deposition for neutral
particle problems. As the charged-particle contribution is contained within the neutral particle components,
one does not need to simulate charged particles to get reasonable estimates. However, the use of heating
numbers results in a number of caveats that one should be aware of:

1. The energy from non-transported secondary charged particles is deposited along the track (for projectiles
with heating numbers) or at the point of collision (for everything else). If the mean free path of these
secondary products would have been larger than the geometry of interest and as a result would have
been deposited elsewhere, this can result in incorrect energy deposition.

2. Heating numbers ignore the energy deposition from secondary particles undergoing further reactions
beyond slowing down.

3. Photonuclear reactions are not included in the photon data.
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Table 2.4: Physics-dependent Energy Deposition Methods

Neutrons

Table Physics Track-length tallies are performed using heating numbers.
These heating numbers include the kinetic energy for all
secondary particles except photons. If available, the partial
heating numbers of particles on the MODEcard are removed
to ensure consistency. If not, the energy of the secondary
particle is subtracted out from only the + F6 tally at the
point of collision. This second case typically occurs during
light ion recoil.

Model Physics Kinematics are tallied using collision tallies.

Photons

Table Physics Track-length tallies are performed using heating numbers.
These heating numbers include the kinetic energy for all
secondary particles except neutrons. For secondary parti-
cles other than neutrons and electrons, energy balance is
achieved using the same approach as for tabular neutrons
above. Electron heating is never removed from the heating
number. As such, F6 :p and F6 :e will double count the elec-
tron contribution. For + F6 tallies, kinematic collision tallies
are used for photons instead to guarantee consistency.

Model Physics Kinematics are tallied using collision tallies.

Charged Particles The slowing down energy deposition is tallied by taking the start energy and end
energy of a track and performing a track-length tally assuming a constantdE=dx.
For cell-based tallies, this results in no approximation as particles will always stop at
a surface crossing. For mesh-based tallies, this can lead to localized inconsistencies
between neighboring mesh elements.

Table Physics (proton only)
Track-length tallies are performed using heating numbers.
These heating numbers include the kinetic energy for all
secondary particles. Energy balance is achieved using the
same approach as for tabular neutrons above.

Model Physics Kinematics are tallied using collision tallies. If neutral
daughter products (which includes neutrons, photons, neu-
trinos, � 0, and neutral kaons) are not on the MODE card,
their energy will not be deposited.

Other Neutral Particles
Kinematics are tallied using collision tallies. If neutral daughter products (which
includes neutrons, photons, neutrinos,� 0, and neutral kaons) are not on the MODEcard,
their energy will not be deposited.
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4. Heating from radioactive decay is not included.

The �rst three caveats can be remedied by adjusting the MODE and PHYS cards to include the necessary
particles and physics. The more comprehensive both are, the more accurate energy deposition will be.

Radioactive decay is partially handled by the MCNP code in a variety of ways. UsingTOTNU on (default),
delayed neutrons from �ssion will be produced and transported, and will deposit energy in the same fashion
as prompt neutrons. The generation of delayed neutrons from capture, as well as generation of other particles,
is done via the ACT card.

With these caveats and remedies in mind, there are a few rules of thumb for computing accurate energy
deposition:

1. For low energy neutron sources andk-eigenvalue problems, aMODEn p, F6 :n+ F6 :p or + F6 tally will
provide reasonably accurate prompt total + �ssion delay neutron energy deposition values.

2. For low energy photon �xed-source problems, MODEp, F6 :p or + F6 will provide reasonably accurate
energy deposition. One should enable photo�ssion if necessary.

3. The ACT card can allow computing non-�ssion delayed neutrons and other delayed particles. It can only
be used for �xed-source simulations.

4. If the geometry is thin relative to the mean free path of generated secondary particles (such as electrons
from photons, or recoil nuclei from any nuclear reaction), and the energy deposition in this component
is important, one should add those particles to the simulation and use+ F6 tallies to prevent double-
counting energy deposition. In addition, light ion recoil may need to be enabled (see thePHYS:n and
PHYS:h cards) for some problems.

5. If a given particle type is expected to undergo important reactions beyond slowing down, it should be
added to the simulation.

6. If neutral particles can be generated, they should be included on theMODEcard or the energy will not
be tracked.

2.5.4 Track-length Fission Energy Deposition

The �ssion-energy deposition (F7 ) tally is a track-length estimate of neutron-induced �ssion energy deposition,
and is given in units of MeV/g per source particle. The * F7 tally is identical to the F7 tally, but converted
to jerks/g per source particle (see Table 2.2 and Table 2.3). TheQ values used to compute F7 tallies are
printed in PRINT Table 98 in an MCNP output �le.

2.5.4.1 Equivalence of F4, F6, and F7 Tallies

For neutrons and photons, the F6 and F7 heating tallies are special cases of theF4 track length estimate of
cell �ux with energy-dependent multipliers. The tally combinations given in Listing give equivalent results.

Listing 2.2: tally_equivalence.mcnp.inp.txt

1 c Tally Definitions

2 f14:n 1

3 fm14 0.0025621 9 1 -4

4 f16:n 1

5 c
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6 f24:n 1

7 fm24 0.0025621 9 -6 -8

8 f27:n 1

9 c

10 f34:p 1

11 fm34 0.0025621 9 -5 -6

12 f36:p 1

That is, the F 14/ FM14 and F 16 tallies are equivalent, the F 24/ FM24 and F 27 tallies are equivalent, and the
F 34/ FM34 and F 36 tallies are equivalent. In this example, material 9 in cell 1 is235U with an atom density
(� a) of 0.02 atoms/barn-cm and a mass density (� g) of 7.80612 g/cm3 for an atom/gram ratio of 0.0025621.
Note that using � 1=� g will give the same result as using� a=� g and is a better choice if perturbations are
used. For more information on perturbations see Ÿ2.12.

For the photon results to be identical, both electron transport and the thick-target bremsstrahlung approxi-
mation ( PHYS:p j 1 must be turned o�. In the F 6:p tally, if a photon produces an electron that produces a
photon, the second photon is not counted again. It is already tallied in the �rst photon heating. In the F 4: p

tally, the second photon track is counted, so theF4 tally will slightly overpredict the tally.

The photon heating tally also can be checked against the* F8 energy deposition tally by dividing the F6 tally
by a unit mass with the SD card. Results will only be statistically identical because the tallies are totally
independent and use di�erent estimators. The FM card can also be used to make the surface �ux tally (F2 )
and point and ring detector tallies ( F5 ) calculate heating, on a surface or at a point, respectively.

2.5.5 Pulse-height Tallies

The pulse height tally provides the energy distribution of pulses created in a cell that models a physical
detector. It also can provide the energy deposition in a cell. Although the entries on theF8 card are cells,
this is not a track length cell tally. The pulse-height tallies are made at source points and at surface crossings.
The * F8 card changes the tally from deposition of pulses to an energy deposition tally and the+ F8 card
changes the tally to a charge deposition tally. The pulse height tally is analogous to a physical detector. The
F8 energy bins (ED ) correspond to the total energy deposited in a detector in the speci�ed channels by each
computational particle (history). All the other MCNP tallies record the energy of a scoring track in the
energy bin.

In an experimental con�guration, suppose a source emits 100 photons at 10 MeV, and ten of these get to the
detector cell. Further, suppose that the �rst photon (and any of its progeny created in the cell) deposits
1 keV in the detector before escaping, the second deposits 2 keV, and so on up to the tenth photon which
deposits 10 keV. Then the pulse height measurement at the detector would be one pulse in the 1-keV energy
bin, 1 pulse in the 2-keV energy bin, and so on up to 1 pulse in the 10-keV bin.

In the analogous MCNP pulse height tally, the source cell is credited with the energy times the weight of the
source particle. When a particle crosses a surface, the energy times the weight of the particle is subtracted
from the account of the cell that it is leaving and is added to the account of the cell that it is entering. The
energy is the kinetic energy of the particle plus2moc2 = 1 :022016MeV if the particle is a positron. At
the end of the history, the account in each tally cell is divided by the source weight. The resulting energy
determines which energy bin the score is put in. The value of the score is the source weight (WC ) for an
F8 tally and the source weight times the energy in the account for a* F8 tally. The value of the score is zero
if no track entered the cell during the history. Another aspect of the pulse height tally that is di�erent from
other MCNP tallies is that F 8:p, F 8:e and F 8:p,e are all equivalent. All the energy from both photons and
electrons, if present, will be deposited in the cell, no matter which tally is speci�ed.
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Figure 2.9: Illustration of point detector contributions.

When the pulse height tally is used with energy bins, care must be taken because of negative scores from
non-analog processes and zero scores caused by particles passing through the pulse height cell without
depositing energy. In some codes, like the Integrated TIGER Series, these events cause large contributions
to the lowest energy bin pulse height score. In other codes no contribution is made. The MCNP code
compromises by counting these events in a zero bin and an epsilon bin so that these scores can be segregated
out. It is recommended that energy binning for an F8 tally be something like

1 E8 0 1.e-5 1.0 2.0 3.0 4.0 5.0 ...

Knock-on electrons in the MCNP code are non-analog in that the energy loss is included in the multiple
scattering energy loss rate rather than subtracted out at each knock-on event. Thus knock-ons can cause
negative energy pulse height scores. These scores will be caught in the 0 energy bin. If they are a large
fraction of the total F8 tally, then the tally is invalid because of non-analog events. Another situation is
di�erentiating zero contributions from particles not entering the cell and particles entering the cell but not
depositing any energy. These are di�erentiated in the MCNP code by causing an arbitrary 1.e-12 energy loss
for particles just passing through the cell. These will appear in the 0-epsilon bin.

2.5.6 Flux at a Detector

The neutral particle �ux can be estimated at a point (or ring) using the point (or ring) detector next-event
estimator. Neutral particle �ux images using an array of point detectors�one detector for each pixel�can
also be estimated. Detectors can yield anomalous statistics and must be used with caution. Detectors also
have special variance reduction features, such as a highly advantageousDD card Russian roulette game.
Whenever a user-supplied source is speci�ed, a user-supplied source angle probability density function must
also be provided.

2.5.6.1 Point Detector

A point detector is a deterministic estimate (from the current event point) of the �ux at a point in space.
Contributions to the point detector tally are made at source and collision events throughout the random
walk. The point detector tally ( F5 ) may be considered a limiting case of a surface �ux tally (F2 ), as will be
shown in Figure 2.9.

Consider the point detector to be a sphere whose radius is shrinking to zero. Let
 P be in the direction to
the center of the sphere, i.e., in the directionr P � r . Let d
 P be the solid angle subtended by the sphere
from r , and let dA be de�ned by the intersection of an arbitrary plane (passing through the detector point)
and the collapsing cone.
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In order to contribute to a �ux tally upon crossing dA, the particle has to do two things. First, the particle
must scatter toward dA (i.e. into solid angle d
 P ); this occurs with probability p(
 P )d
 P . Second, the
particle must have a collision-less free �ight for the distanceL = jr P � r j (along 
 P ) to the sphere; this

occurs with probability exp
�

�
� L

0 � t (s)ds
�

, where � t (s) is the total macroscopic cross section at a distance

s (along 
 P ) from the source or collision point. The probability that these two events both occur is

p(
 P )d
 P exp

0

@�

L�

0

� t (s)ds

1

A :

De�ne � to be the cosine of the angle between the particle direction and the unit normal (n) to area dA as

� = 
 P � n: (2.171)

If a particle of weight w reachesdA, it will contribute w=j� jdA to the �ux (compare to the F2 tally in
Ÿ2.5.2.2).

As the sphere shrinks to a point, the solid angle subtended bydA is 
 P = j� jdA=L 2. The sides of the cone
in the �gure become parallel and the cone resembles a cylinder near the shrinking sphere. Thus the tally
becomes

F5 = p(
 P )d
 P exp

2

4�

L�

0

� t (s)ds

3

5 w
j� jdA

= wp(
 P )
j� jdA

L 2

1
j� jdA

exp

2

4�

L�

0

� t (s)ds

3

5

or

F5 = w
p(
 P )

L 2 exp

2

4�

L�

0

� t (s)ds

3

5: (2.172)

In all the scattering distributions and in the standard sources, the MCNP code assumes azimuthal symmetry.
This provides some simpli�cation. The angle 
 P can be expressed in polar coordinates with the incoming
particle direction being the polar axis. The azimuthal angle is� and the cosine of the polar angle is� . The
probability of scattering into d
 P can then be written in terms of a probability in � , � . That is,

p(
 P )d
 P = p(�; � )d� d�: (2.173)

De�ning the probability density function for scattering about � as

p(� ) �

2��

0

p(�; � )d� (2.174)

and, recalling that p(�; � ) is independent of� , yields

p(�; � ) =
p(� )
2�

: (2.175)

Substituting this into the last expression for the F5 tally yields

F5 = w
p(� )
2�L 2 exp

2

4�

L�

0

� t (s)ds

3

5: (2.176)
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A point detector tally is known as a �next-event estimator� because it is a tally of the �ux at a point as if the
�next event� were a particle trajectory directly to the detector point without further collision.

A contribution to the point detector is made at every source or collision event. Theexp(� � ) term accounts
for attenuation between the present event and the detector point. The1=2�L 2 term accounts for the solid
angle e�ect. The p(� ) term accounts for the probability of scattering toward the detector instead of the
direction selected in the random walk. For an isotropic source or scatter,p(� ) = 0 :5, and the solid angle
terms reduce to the expected1=4�L 2. Note that p(� ) can be larger than unity because it is the value of a
density function and not a probability. Each contribution to the detector can be thought of as the transport
of a pseudoparticle to the detector.

The L 2 term in the denominator of the point detector causes a singularity that makes the theoretical variance
of this estimator in�nite. That is, if a source or collision event occurs near the detector point, L approaches
zero and the �ux approaches in�nity. The technique is still valid and unbiased, but convergence is slower
and often impractical. If the detector is not in a source or scattering medium, a source or collision close to
the detector is impossible. For problems where there are many scattering events near the detector, a cell or
surface estimator should be used instead of a point detector tally. If there are so few scattering events near
the detector that cell and surface tallies are impossible, a point detector can still be used with a speci�ed
average �ux region close to the detector. This region is de�ned by a �ctitious sphere of radiusRo surrounding
the point detector. Ro can be speci�ed either in centimeters or in mean free paths. IfRo is speci�ed in
centimeters and if L < R o, the point detector estimation inside Ro is assumed to be the average �ux uniformly
distributed in volume. That is

�( L < R o) =

�
V �( r; �; � )dV

�
V dV

(2.177)

=

� R o

0 w p( � )
2� �r 2 exp

�
�

� r
0 � t (s)ds

�
��r 2dr

� �
0 sin(� )d�

� 2�
0 d�

� R o

0 r 2dr
� �

0 sin(� )d�
� 2�

0 d�
(2.178)

=
4�
2� w p(� )

� R o

0 exp
�
�

� r
0 � t (s)ds

�
dr

4�
3 R3

o
(2.179)

=
3w p(� )

� R o

0 exp
�
�

� r
0 � t (s)ds

�
dr

2�R 3
o

; (2.180)

where we can assume that the total cross section is constant within the sphere, so

�( L < R o) =
3w p(� )

� R o

0 exp[� � t r ]dr
2�R 3

o
(2.181)

=
3w p(� )[1 � exp(� � t Ro)]

2�R 3
o� t

: (2.182)

If � t = 0 , the detector is not in a scattering medium, no collision can occur, and

�( L < R o; � t = 0) = lim
� t ! 0

3w p(� )[1 � exp(� � t Ro)]
2�R 3

o� t
=

3w p(� )
2�R 2

o
: (2.183)

If the �ctitious sphere radius is speci�ed in mean free paths � 0, then � 0 = � t Ro and

�( � < � 0) =
3w p(� )[1 � exp(� � 0)]� 2

t

2�� 3
0

: (2.184)

The choice ofRo may require some experimentation. For a detector in a void region or a region with very
few collisions (such as air),Ro can be set to zero. For a typical problem, settingRo to a mean free path or
some fraction thereof is usually adequate. IfRo is in centimeters, it should correspond to the mean free path
for some average energy in the sphere.
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o Caution

Be certain when de�ning Ro that the sphere it de�nes does not encompass more than one material
unless you understand the consequences. This is especially true when de�ningRo in terms of mean
free path becauseRo becomes a function of energy and can vary widely. If the sphere does contain
multiple materials, the total cross section used corresponds to the material at the center of the sphere.

In particular, if Ro is de�ned in terms of mean free paths and if a detector is on a surface that bounds a
void on one side and a material on the other, the contribution to the detector from the direction of the void
will be zero even though the importance of the void is nonzero. The reason is simply that the volume of the
arti�cial sphere is in�nite in a void. Contributions to the detector from the other direction (that is, across
the material) will be accounted for.

Detectors di�ering only in Ro are coincident detectors [Ÿ2.5.6.4.4], and there is little cost incurred by
experimenting with several detectors that di�er only by Ro in a single problem.

2.5.6.2 Ring Detector

A ring detector [139] tally is a point detector tally in which the point detector location is not �xed but
rather sampled from some location on a ring. Most of the previous section on point detectors applies to
ring detectors as well. In the MCNP code, three ring detector tallies (F x , F y , and F z) correspond to rings
located rotationally symmetric about the x-, y-, and z-coordinate axes. A ring detector usually enhances
the e�ciency of point detectors for problems that are rotationally symmetric about a coordinate axis. Ring
detectors also can be used for problems where the user is interested in the average �ux at a point on a ring
about a coordinate axis.

Although the ring detector is based on the point detector that has a1=L2 singularity and an unbounded
variance, the ring detector has a �nite variance and only a1=Lmin singularity, where L min is the minimum
distance between the contributing point and the detector ring [140].

In a cylindrically symmetric system, the �ux is constant on a ring about the axis of symmetry. Hence, one
can sample uniformly for positions on the ring to determine the �ux at any point on the ring. The ring
detector e�ciency is improved by biasing the selection of point detector locations to favor those near the
contributing collision or source point. This bias results in the same total number of detector contributions,
but the large contributions are sampled more frequently, reducing the relative error.

For isotropic scattering in the lab system, experience has shown that a good biasing function is proportional
to exp(� P)L � 2, where P is the number of mean free paths andL is the distance from the collision point to
the detector point. For most practical applications, using a biasing function involving P presents prohibitive
computational complexity except for homogeneous medium problems. For air transport problems, a biasing
function resembling exp(� P) has been used with good results. A biasing function was desired that would be
applicable to problems involving dissimilar scattering media and would be e�ective in reducing variance. The
function L � 2 meets these requirements.

In Figure 2.10, consider a collision point,(xo; yo; zo) at a distance L from a point detector location (x; y; z).
The point (x; y; z) is to be selected from points on a ring of radiusr that is symmetric about the y-axis in
this case.

To sample a position (x; y; z) on the ring with a 1=L2 bias, we pick ' from the density function p(' ) =
C=

�
2�L 2

�
, where C is a normalization constant. To pick ' from p(' ), let � be a random number on the unit
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Figure 2.10: Illustration of ring detector contributions.

interval. Then

� =
C
2�

'�

� �

d' 0

L 2

=
C
2�

'�

� �

d' 0

(xo � r cos(' 0))2 + ( yo � y)2 + ( xo � r sin(' 0))2

=
C
2�

'�

� �

d' 0

a + bcos(' 0) + csin(' 0)

=
1
�

tan � 1
�

1
C

h
(a � b) tan

� '
2

�
+ c

i �
+

1
2

(2.185)

where

a = r 2 + x2
o + ( y � yo)2 + z2

o ,

b = � 2rx o,

c = � 2rzo, and

C =
�
a2 � b2 � c2

� 1=2
.

The above equation is valid if a2 > b2 + c2, which is true except for collisions exactly on the ring.

Solving for tan( ' =2), one obtains

tan
� '

2

�
=

1
a � b

�
C tan

�
�

�
� �

1
2

��
� c

�
: (2.186)

Letting t = tan( ' =2), then

x = r cos(' ) = r
1 � t2

1 + t2 ; (2.187a)

y = y (�xed) ; (2.187b)

z = r sin(' ) =
2rt

1 + t2 : (2.187c)
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For ring detectors, the 1=L2 biasing has been supplemented when it is weak to include a biasing based on
angle to select the point on the ring. This angle is in the plane of the ring and is relative to the shortest line
from the collision point to the detector ring. The angle that would most likely be selected would pick the
same point on the ring as a straight line through the axis of the problem, the collision point, and the ring.
The angle least likely to be picked would choose the point on the opposite side of the ring. This approach will
thus make scores with smaller attenuations more often. This supplemental biasing is achieved by requiring
that a � 3=2

�
b2 + c2

� 1=2
in Eq. (2.186).

If the radius of the ring is very large compared to the dimensions of the scattering media (such that the
detector sees essentially a point source in a vacuum), the ring detector is still more e�cient than a point
detector. The reason for this unexpected behavior is that the individual scores to the ring detector for a
speci�c history have a mean closer to the true mean than to the regular point detector contributions. That is,
the point detector contributions from one history will tend to cluster about the wrong mean because the
history will not have collisions uniformly in volume throughout the problem, whereas the ring detector will
sample many paths through the problem geometry to get to di�erent points on the ring.

2.5.6.3 Flux Image Detectors

Flux image detector tallies are an array of point detectors close enough to one another to generate an image
based on the point detector �uxes. Each detector point represents one pixel of the �ux image. The source
need not be embedded in the object. The particle creating the image does not have to be the source particle
type. Three types of neutral particle �ux image tallies can be made [141, 142]:

ˆ Flux Image Radiograph (FIR ), a �ux image radiograph on a planar image surface;

ˆ Flux Image on a Cylinder ( FIC ), a �ux image on a cylindrical image surface; and

ˆ Flux Image by Pinhole ( FIP ), a �ux image by pinhole on a planar image surface.

When these �ux image tallies are used with FSn and Cn cards to construct a virtual image grid, millions of
point detectors can be created-one detector for each pixel-to produce a �ux image. TheFSn card is used to
de�ne the image pixels along thes-axis. The Cn card de�nes the pixels along thet-axis. The relationship
of the s-axis, t-axis, and reference direction for the planar image grid is calculated by the MCNP code and
follows the right-hand rule. Since the orientation of the s-axis and the t-axis is dependent on the reference
direction in the geometry coordinate system, the MCNP tally output should be examined to see the direction
cosines of these two planar image grid axes.

o Caution

The image grid SHOULD NOT be in a scattering material because the point detector average �ux
neighborhood is not used for �ux image tallies.

2.5.6.3.1 Radiograph Image Tallies

Both the Flux Image Radiograph ( FIR ) and Flux Image on a Cylinder ( FIC ) tallies act like �lm for an x-ray
type image (that is, a transmitted image for neutrons or photons). The diagram in Figure 2.11 shows how the
FIR planar rectangular grid image is de�ned for a source particle passing through an object and scattering in
an object. An FIC cylindrical surface grid generates an image on a cylinder as shown in Figure 2.12 for the
particles generated inside the object.
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Figure 2.11: Diagram of an FIR (Flux Image Radiograph) tally for a source external to the
object. The directions of the orthogonal S- and T-axes depend on the reference-direction
vector in the geometry coordinate system.

Figure 2.12: Diagram of an FIC (Flux Image on a Cylinder) tally for a source internal to
the object.
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Figure 2.13: Diagram of an FIP (Flux Image by Pinhole) tally for a source internal to the
object. The directions of the orthogonal S- and T-axes depend on the reference-direction
vector in the geometry coordinate system.

In both cases, a ray-trace point-detector �ux contribution is made to every image grid bin (pixel) from each
source and scatter event. Allowing each event to contribute to all pixels reduces statistical �uctuations across
the grid that would occur if the grid location for the contribution were selected randomly. For each source
and scatter event, the direction cosines to a pixel detector point are determined. The option exists to select a
random position in the pixel. The same relative random o�set is used for all pixels for a source or scatter
event. The random detector location in a pixel changes from event to event. The option also exists to select
the point detector location at the center of each pixel when the center �ux is desired.

A standard point detector attenuated ray-trace �ux contribution to the image pixel is then made. A new
direction cosine is determined for each pixel followed by the new ray-trace �ux calculation. These tallies
automatically create a source-only contribution and a total for each pixel. Standard point detector tally
modi�cations can be made to the image tally, for example, by using theFM, PD, and FT cards.

2.5.6.3.2 Pinhole Image Tally

The Flux Image by Pinhole ( FIP ) tally uses a pinhole (as in a pinhole camera) to create a neutron or photon
image onto a planar rectangular grid that acts much like photographic �lm. Figure 2.13 is a diagram of the
FIP image tally. Each source and scatter event contributes to one point detector on the image grid pixel
intersected by the particle trajectory through the pinhole.

The particle event point and the virtual pinhole point (sampled uniformly in area if a radius is speci�ed)
are used to de�ne the direction cosines of the contribution to be made from the source or scatter location
through the pinhole to one image grid element (pixel). Once this direction is established, a ray-trace point
detector �ux contribution is made to the intersected pixel including attenuation by any material along that
path. No source or scattering events on the image grid side of the pinhole will contribute to the image.

The pinhole and associated grid will image both direct source contributions and the direct plus any scattered
contributions. Standard tally modi�cations can be made to the image tally, for example, by using the FM, PD,
and FT cards.

The magnitude of the �ux contribution through the pinhole to a pixel is calculated as follows. The �ux at a
pinhole point P is � P (
 ), where 
 is the direction that intersects the pinhole at point P. De�ne � to be the
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cosine of the angle between the detector trajectory and the reference direction, which is perpendicular to
the plane of the pinhole. The particle weight per unit pinhole area (or the particle current per unit pinhole
area) is � P (
 )� . The weight in a small areadA in the pinhole is � P (
 )� dA. The total particle weight W
integrated over the pinhole areaAP is

W =
�

A P

� P (
 )� dA: (2.188)

The FIP tally selects one particle trajectory to carry this weight. This trajectory should be sampled in dA
from

p(
 )d
 =
� P (
 )� dA�

A P
� P (
 )� dA

: (2.189)

Instead, the pinhole point P sampling is biased to be uniform in the pinhole areaAP ; that is,

b(
 )d
 =
dA
AP

: (2.190)

To account for this biased sampling, the weightW of the sample must be multiplied by

wm (
 ) =
p(
 )
b(
 )

=
AP � P (
 )��

A P
� P (
 )� dA

: (2.191)

Thus, an unbiased estimate of the sampled weight going throughdA at the pinhole is WP (
 ) = Wwm (
 ) or

WP (
 ) =

2

4
�

A P

� P (
 )� dA

3

5

"
AP � P (
 )��

A P
� P (
 )� dA

#

= AP � P (
 )�: (2.192)

Now that an unbiased estimate of the weight throughdA is obtained, an unbiased estimate of the weight
arriving on the image plane can also be obtained. If� (
 ) is the optical path along 
 from the sampled
pinhole point to the image plane, then the weight Wpixel (
 ) arriving at the pixel in the image plane is

Wpixel (
 ) = WP (
 ) exp[� � (
 )] = AP � P (
 )� exp[� � (
 )]: (2.193)

The surface �ux at the image plane is estimated by theWpixel (
 ) divided by � (note that the pinhole plane
and image plane are parallel) divided by pixel areaApixel . Therefore, the surface �ux at the intersected pixel
is

� pixel (
 ) =
AP � P (
 ) exp[� � (
 )]

Apixel
: (2.194)

Thus, the �ux at the pixel is just the exp[� � (
 )]-attenuated �ux at the pinhole scaled by the ratio of AP

(where the weight W passes through) to theApixel (the pixel where the �ux � pixel (
 ) is scored). If a perfect
pinhole with no pinhole area is used, thenAP is de�ned to be unity.

2.5.6.4 General Considerations of Point Detector Estimators

2.5.6.4.1 Pseudoparticles and Detector Reliability

Point and ring detectors are Monte Carlo methods wherein the simulation of particle transport from one
place to another is deterministically short-circuited. Transport from the source or collision point to the
detector is replaced by a deterministic estimate of the potential contribution to the detector. This transport
between the source or collision point and the detector can be thought of as being via �pseudoparticles.�
Pseudoparticles undergo no further collisions. These particles do not reduce the weight or otherwise a�ect
the random walk of the particles that produced them. They are merely estimates of a potential contribution.
The only resemblance to Monte Carlo particles is that the quantity they estimate requires an attenuation
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Monoenergetic isotropic source Detector

Scattering region

Figure 2.14: Demonstration of inappropriate source-point detector-scatterer con�guration.

term that must be summed over the trajectory from the source or collision to the detector. Thus most of the
machinery for transporting particles can also be used for the pseudoparticles. No records (for example, tracks
entering) are kept about pseudoparticle passage.

o Caution

Because detectors rely on pseudoparticles rather than particle simulation by random walk, they should
be considered only as a very useful last resort. Detectors are unbiased estimators, but their use can be
tricky, misleading, and occasionally unreliable.

Consider the problem illustrated in Figure 2.14. The monoenergetic isotropic point source always will make
the same contribution to the point detector, so the variance of that contribution will be zero. If no particles
have yet collided in the scattering region, the detector tally will be converged to the source contribution,
which is wrong and misleading. But as soon as a particle collides in the scattering region, the detector tally
and its variance will jump. Then the detector tally and variance will steadily decrease until the next particle
collides in the scattering region, at which time there will be another jump.

These jumps in the detector score and variance are characteristic of undersampling important regions. Next-
event estimators are prone to undersampling as already described in Ÿ2.4.4.2.5 for thep(� ) term of photon
coherent scattering. The jump discussed here is from the sudden change in theL and possibly � terms.
Jumps in the tally caused by undersampling can be eliminated only by better sampling of the undersampled
scattering region that caused them.

Biasing Monte Carlo particles toward the tally region would cause the scattering region to be sampled better,
thus eliminating the jump problem. It is recommended that detectors be used with caution and with a complete
understanding of the nature of next-event estimators. When detectors are used, the tally �uctuation charts
printed in the output �le should be examined closely to see the degree of the �uctuations. Also the detector
diagnostic tables in the MCNP output �le should be examined to see if any one pseudoparticle trajectory
made an unusually large contribution to the tally. Detector results should be viewed suspiciously if
the relative error is greater than 5%. Close attention should be paid to the tally statistical analysis
and the ten statistical checks described in Ÿ2.6.9.2.3.

2.5.6.4.2 Detectors and Re�ecting, White, or Periodic Surfaces

o Caution

Detectors used with re�ecting, white, or periodic surfaces give wrong answers because pseudoparticles
travel only in straight lines.
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Re�ecting plane

Detector

Source cells

Figure 2.15: Demonstration of inappropriate source-point detector-re�ecting boundary
scenario.

Consider Figure 2.15, with a point detector and six source cells. The imaginary cells and point detector are
also shown on the other side of the mirror. The solid line shows the source contribution from the indicated
cell. The MCNP code does not allow for the dashed-line contribution on the other side of the re�ecting
surface. The result is that contributions to the detector will always be from the solid path instead of from
a mixture of solid and dashed contributions. This same situation occurs at every collision. Therefore, the
detector tally will be lower (with the same starting weight) than the correct answer and should not be used
with re�ecting, white, or periodic surfaces. The e�ect is even worse for problems with multiple re�ecting,
white, or periodic surfaces.

2.5.6.4.3 Variance-reduction Schemes for Detectors

Pseudoparticles of point detectors are not subject to the variance reduction schemes applied to particles
of the random walk. They do not split according to importances, weight windows, etc., although they are
terminated by entering zero importance cells. However, two Russian roulette games are available speci�cally
for detector pseudoparticles.

The PD card can be used to specify the pseudoparticle generation probability for each cell. The entry for
each celli is pi where 0 � pi � 1. Pseudoparticles are created with probability pi and weight 1=pi . If pi = 1 ,
which is the default, every source or collision event produces a pseudoparticle. Ifpi = 0 , no pseudoparticle is
produced.

o Caution

Setting pi = 0 in a cell that can actually contribute to a detector erroneously biases the detector tally
by eliminating such contributions.

Thus pi = 0 should be used only if the true probability of scoring is zero or if the score from celli is unwanted
for some legitimate reason such as problem diagnostics. Fractional entries ofpi should be used with caution
because thePD card applies equally to all pseudoparticles. TheDD card can be used to Russian roulette just
the unimportant pseudoparticles. However, the DD card roulette game often requires particles to travel some
distance along their trajectory before being killed. When cells are many mean-free paths from the detector,
the PD card may be preferable.
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The DD card controls both the detector diagnostic printing and a Russian roulette game played on pseudopar-
ticles in transit to detectors. The Russian roulette game is governed by the input parameterk that controls a
comparison weightwc internal to the MCNP code, such that

wc =

8
>>><

>>>:

� k k < 0
0 k = 0
0 k > 0 and N � 200
k
N � I

i ' i k > 0 and N > 200

(2.195)

where

N is the number of histories run thus far,

I is the number of pseudoparticles started so far,

' i = W p (� ) exp( � � )
2�L 2 , and

I is the contribution from the i th pseudoparticle to the detector tally.

When each pseudoparticle is generated,W, p(� ), and L are already known before the expensive tracking
process is undertaken to determine� . If Wp(� )=

�
2�L 2

�
< w c, the pseudoparticle contribution to the detector

' i will be less than the comparison weight. Playing Russian roulette on all pseudoparticles with' i < w c avoids
the expensive tracking of unimportant pseudoparticles. Most are never started. Some are started but are
rouletted as soon as� has increased to the point whereWp(� )e� � =

�
2�L 2

�
< w c. Rouletting pseudoparticles

whose expected detector contribution is small also has the added bene�t that those pseudoparticles surviving
Russian roulette now have larger weights, so the disparity in particle weights reaching the detector is reduced.
Typically, using the DD card will increase the e�ciency of detector problems by a factor of ten. This Russian
roulette is so powerful that it is one of two MCNP variance reduction options that is turned on by default.
The default value of k is 0.1. The other default variance reduction option is implicit capture.

The DD card Russian roulette game is almost foolproof. Performance is relatively insensitive to the input
value of k. For most applications the default value of k = 0 :1 is adequate. Usually, choosek so that there are
1�5 transmissions (pseudoparticle contributions) per source history. Ifk is too large, too few pseudoparticles
are sampled; thusk � 1 is a fatal error.

o Caution

Because a random number is used for the Russian roulette game invoked byk > 0, the addition of a
detector tally a�ects the random walk tracking processes.

Detectors are the only tallies that a�ect results. If any other tally type is added to a problem, the original
problem tallies remain unchanged. Because detectors use the defaultDD card Russian roulette game, and
that game a�ects the random number sequence, the whole problem will track di�erently and the original
tallies will agree only to within statistics. Because of this tracking di�erence, it is recommended that k < 0
be used once a good guess atwc can be made. This is especially important if a problem needs to be debugged
by starting at some history past the �rst one. Also, k < 0 makes the �rst 200 histories run faster.

There are two cases when it is bene�cial to turn o� the DD card Russian roulette game by settingk = 0 .
First, when looking at the tail of a spectrum or some other low probability event, the DD card roulette game
will preferentially eliminate small scores and thus eliminate the very phenomenon of interest. For example, if
energy bias is used to preferentially produce high energy particles, these biased particles will have a lower
weight and thus preferentially will be rouletted by the DD card game. Second, in very deep penetration
problems, pseudoparticles will sometimes go a long way before being rouletted. In this rare case it is wasteful
to roulette a pseudoparticle after a great deal of time has been spent following it and perhaps a fractional
PD card should be used or, if possible, a cell or surface tally.
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2.5.6.4.4 Coincident Detectors

Because tracking pseudoparticles is very expensive, the MCNP code uses a single pseudoparticle for multiple
detectors, known as coincident detectors, that must be identical in:

ˆ geometric location,

ˆ particle type (that is, neutron or photon),

ˆ upper time bin limit,

ˆ DD card Russian Roulette control parameter,k, and

ˆ PD card entries, if any.

Energy bins, time bins, tally multipliers, response functions, �ctitious sphere radii, user-supplied modi�cations
(TALLYX), etc., can all be di�erent. Coincident detectors require little additional computational e�ort because
most detector time is spent in tracking a pseudoparticle. Multiple detectors using the same pseudoparticle
are almost �free.�

2.5.6.4.5 Direct vs. Total Contribution

Unless speci�cally turned o� by the user, the MCNP code automatically prints out both the direct and total
detector contribution. Recall that pseudoparticles are generated at source and collision events. The direct
contribution is that portion of the tally from pseudoparticles born at source events. The total contribution is
the total tally from both source and collision events. For MODEN P problems with photon detectors, the direct
contribution is from pseudophotons born in neutron collisions. The direct contributions for detailed photon
physics will be smaller than the simple physics direct results because coherent scattering is included in the
detailed physics total cross section and omitted in the simple physics treatment.

2.5.6.4.6 Angular Distribution Functions for Point Detectors

All detector estimates require knowledge of thep(� ) term, the value of the probability density function at an
angle � , where � = cos(� ). This quantity is available to the MCNP code for the standard source and for all
kinds of collisions. For user-supplied source subroutines, the MCNP code assumes an isotropic distribution,

p(� )d� =
d

4�

=

2��

0

d� d'
4�

=
1
2

d�: (2.196)

Therefore, the variable PSC = p(� ) = 1=2. If the source distribution is not isotropic in a user-supplied source
subroutine, the user must also supply a subroutineSRCDXif there are any detectors or DXTRAN spheres in
the problem. In subroutine SRCDX, the variable PSC must be set for each detector and DXTRAN sphere. An
example of how this is done and also a description of several other source angular distribution functions is in
Ÿ10.3.5.
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2.5.6.4.7 Detectors and the S(�; � ) Thermal Treatment

The S(�; � ) thermal treatment poses special challenges to next-event estimators because the probability
density function for angle has discrete lines to model Bragg scattering and other molecular e�ects. Therefore,
the MCNP code has an approximate model [73] that, for the PSC calculation (not the transport calculation),
replaces the discrete lines with �nite histograms of width � < 0:1.

This approximation has been demonstrated to accurately model the discrete lineS(�; � ) data. In cases where
continuous data is approximated with discrete lines, the approximate scheme cancels the errors and models
the scattering better than the random walk [74]. Thus the S(�; � ) thermal treatment can be used with
con�dence with next-event estimators like detectors and DXTRAN.

2.5.7 Additional Tally Features

The standard MCNP tally types can be controlled, modi�ed, and beauti�ed by other tally cards. These cards
are described in detail in Ÿ3.2.5.4; an overview is given here.

2.5.7.1 Bin Limit Control

The integration limits of the various tally types can be controlled by E , T , C, and FS cards. The E card
establishes energy bin ranges; theT card establishes time bin ranges; theC card establishes cosine bin ranges;
and the FS card segments the surface or cell of a tally into subsurface or subcell bins.

2.5.7.2 Flagging

Cell and surface �agging cards, CF and SF, determine where the di�erent portions of a tally originate. For
example:

1 F4 1

2 CF4 2 3 4

The �ux tally for cell 1 is output twice: �rst, the total �ux in cell 1; and second, the �agged tally, or that
portion of the �ux caused by particles having passed through cells 2, 3, or 4.

2.5.7.3 Multipliers and Modi�cation

MCNP tallies can be modi�ed in many di�erent ways. The EM, TM, and CM cards multiply the quantities
in each energy, time, or cosine bin by a di�erent constant. This capability is useful for modeling response
functions or changing units. For example, a surface current tally can have its units changed to per steradian
by entering the inverse steradian bin sizes on theCM card.

The DE and DF cards allow modeling of an energy-dependent dose function that is a continuous function of
energy from a table whose data points need not coincide with the tally energy bin structure (E card).

The FM card multiplies the F1 , F2 , F4 , and F5 tally cards by any continuous-energy quantity available in
the data libraries. For example, average heating numbersHavg (E ) and total cross section� t (E ) are stored
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on the MCNP data libraries. An F4 tally multiplied by � t Havg (E )� a=� g converts it to an F6 tally, or an
F5 detector tally multiplied by the same quantity calculates heating at a point [Ÿ2.5.6.1]. The FM card can
modify any �ux or current tally of the form

�
' (E )dE into

�
R(E)' (E )dE , where R(E) is any combination

of sums and products of energy-dependent quantities known to the MCNP code.

The FM card can also model attenuation. Here the tally is converted to
�

' (E ) exp[� � t (E )� ax]dE , where x
is the thickness of the attenuator, � a is its atom density, and � t is its total cross section. Double parentheses
allow the calculation of

�
' (E ) exp[� � t (E )� ax]R(E)dE . More complex expressions of� t (E )� ax are allowed

so that many attenuators may be stacked. This is useful for calculating attenuation in line-of-sight pipes and
through thin foils and detector coatings, particularly when done in conjunction with point and ring detector
tallies. Beware, however, that attenuation assumes that the attenuated portion of the tally is lost from the
system by capture or escape and cannot be scattered back in.

Two special FM card options are available. The �rst option sets R(E) = 1=' (E ) to score tracks or collisions.
The second option setsR(E) = 1 =v (where v is scalar velocity) to score population or prompt removal
lifetime.

2.5.7.4 Special Treatments

A number of special tally treatments are available using the FT card. A brief description of each one follows.

2.5.7.4.1 Change Current Tally Reference Vector

F1 current tallies measure bin angles relative to the surface normal. They can be binned relative to any
arbitrary vector de�ned with the FRV option.

2.5.7.4.2 Gaussian Energy Broadening

The GEBoption can be used to better simulate a physical radiation detector in which energy peaks exhibit
Gaussian energy broadening. The tallied energy is broadened by sampling from the Gaussian,

f (E ) = C exp

"

�
�

E � E0

A

� 2
#

; (2.197)

where

E is the broadened energy,

E0 is the unbroadened energy of the tally,

C is a normalization constant, and

A is the Gaussian width.

The Gaussian width is related to the full width half maximum (FWHM) by

A =
FWHM

2
p

ln 2
� 0:60056120439322� FWHM: (2.198)

The desired FWHM is speci�ed by the user-provided constants,a, b, and c, where

FWHM = a + b
p

E + cE2: (2.199)

The FWHM is de�ned as FWHM = 2(EF W HM � E0), where EF W HM is such that f (EF W HM ) = 1=2f (E0)
and f (E0) is the maximum value of f (E ).
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Chapter 2. Geometry, Data, Physics, and Mathematics 2.5. Tallies

2.5.7.4.3 Time Convolution

Because the geometry and material compositions are independent of time, except in the case of time-dependent
temperatures, the expected tallyT(t; t + � ) at time t + � from a source particle emitted at time t is identical
to the expected tally T(0; � ) from a source particle emitted at time 0. Thus, if a calculation is performed
with all source particles started at t = 0 , one has an estimate ofT(0; � ) and the tallies TQ i from a number of
time-distributed sources. Qi (t) can be calculated at time� as

TQ i (� ) =

b�

a

Qi (t)T(t; � )dt =

b�

a

Qi (t)T(0; � � t)dt (2.200)

by sampling t from Qi (t) and recording each particle's tally (shifted by t), or after the calculation by
integrating Qi (t) multiplied by the histogram estimate of T(0; � � t). The latter method is used in the MCNP
code to simulate a source as a square pulse starting at timea and ending at time b, wherea and b are supplied
by the TMCoption.

2.5.7.4.4 Binning by the Number of Collisions

Tallies can be binned by the number of collisions that caused them with theINC option and an FU card. A
current tally, for example, can be subdivided into the portions of the total current coming from particles that
have undergone zero, one, two, three, . . . collisions before crossing the surface. In a point detector tally, the
user can determine what portion of the score came from particles having their 1st, 2nd, 3rd, . . . collision.
Collision binning is particularly useful with the exponential transform because the transform reduces variance
by reducing the number of collisions.

o Caution

If particles undergoing many collisions are the major contributor to a tally, then the exponential
transform is ill-advised. When the exponential transform is used, the portion of the tally coming from
particles having undergone many collisions should be small.

2.5.7.4.5 Binning by Detector Cell

The ICD option with an FU card is used to determine what portion of a detector tally comes from what cells.
This information is similar to the detector diagnostics print, but the FT card can be combined with energy
and other binning cards. The contribution to the normalized rather than unnormalized tally is printed.

2.5.7.4.6 Binning by Source Distribution

The SCXand SCDoptions are used to bin a tally score according to what source distribution caused it.

2.5.7.4.7 Binning by Multigroup Particle Type

The PTT option with an FU card is used to bin multigroup tallies by particle type. The MCNP multigroup
treatment is available for neutron, coupled neutron/photon, and photon problems. However, charged particles

LA-UR-22-30006, Rev. 1 137 of 1078 Theory & User Manual




























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































	Table of Contents

